1,004 research outputs found

    Generalisations of the Laplace-Runge-Lenz vector in classical mechanics

    Get PDF
    Thesis (Ph.D.)--University of the Witwatersrand, Faculty of Science, 199

    Complexity Characterization in a Probabilistic Approach to Dynamical Systems Through Information Geometry and Inductive Inference

    Full text link
    Information geometric techniques and inductive inference methods hold great promise for solving computational problems of interest in classical and quantum physics, especially with regard to complexity characterization of dynamical systems in terms of their probabilistic description on curved statistical manifolds. In this article, we investigate the possibility of describing the macroscopic behavior of complex systems in terms of the underlying statistical structure of their microscopic degrees of freedom by use of statistical inductive inference and information geometry. We review the Maximum Relative Entropy (MrE) formalism and the theoretical structure of the information geometrodynamical approach to chaos (IGAC) on statistical manifolds. Special focus is devoted to the description of the roles played by the sectional curvature, the Jacobi field intensity and the information geometrodynamical entropy (IGE). These quantities serve as powerful information geometric complexity measures of information-constrained dynamics associated with arbitrary chaotic and regular systems defined on the statistical manifold. Finally, the application of such information geometric techniques to several theoretical models are presented.Comment: 29 page

    Interface Contributions to Topological Entanglement in Abelian Chern-Simons Theory

    Full text link
    We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully define the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of \cite{Cano:2014pya}. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1)d Ishibashi states and the spatial entanglement of (2+1)d topological phases.Comment: 36 pages, 7 figures, two appendice

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    Gravity and the Thermodynamics of Horizons

    Get PDF
    Spacetimes with horizons show a resemblance to thermodynamic systems and it is possible to associate the notions of temperature and entropy with them. Several aspects of this connection are reviewed in a manner appropriate for broad readership. The approach uses two essential principles: (a) the physical theories must be formulated for each observer entirely in terms of variables any given observer can access and (b) consistent formulation of quantum field theory requires analytic continuation to the complex plane. These two principles, when used together in spacetimes with horizons, are powerful enough to provide several results in a unified manner. Since spacetimes with horizons have a generic behaviour under analytic continuation, standard results of quantum field theory in curved spacetimes with horizons can be obtained directly (Sections III to VII). The requirements (a) and (b) also put strong constraints on the action principle describing the gravity and, in fact, one can obtain the Einstein-Hilbert action from the thermodynamic considerations. The latter part of the review (Sections VIII to X) investigates this deeper connection between gravity, spacetime microstructure and thermodynamics of horizons. This approach leads to several interesting results in the semiclassical limit of quantum gravity, which are described.Comment: published version; references update

    Perfect Fluid Theory and its Extensions

    Full text link
    We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations. The theory is related to a description of extended structures in higher dimensions. Internal symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous subjects that are covered include physical topics concerning quantization, as well as mathematical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms (= vortex or magnetic helicity).Comment: 3 figure

    The Ongoing Impact of Modular Localization on Particle Theory

    Get PDF
    Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin particles, it becomes indispensible for interactions which involve higher spin s1s\geq1 fields, where is leads to the replacement of the operator (BRST) gauge theory setting in Krein space by a new formulation in terms of stringlocal fields in Hilbert space. The main purpose of this paper is to present new results which lead to a rethinking of important issues of the Standard Model concerning massive gauge theories and the Higgs mechanism. We place these new findings into the broader context of ongoing conceptual changes within QFT which already led to new nonperturbative constructions of models of integrable QFTs. It is also pointed out that modular localization does not support ideas coming from string theory, as extra dimensions and Kaluza-Klein dimensional reductions outside quasiclassical approximations. Apart from hologarphic projections on null-surfaces, holograhic relations between QFT in different spacetime dimensions violate the causal completeness property, this includes in particular the Maldacena conjecture. Last not least, modular localization sheds light onto unsolved problems from QFT's distant past since it reveals that the Einstein-Jordan conundrum is really an early harbinger of the Unruh effect.Comment: a small text overlap with unpublished arXiv:1201.632

    D-branes and BCFT in Hpp-wave backgrounds

    Full text link
    In this paper we study two classes of symmetric D-branes in the Nappi-Witten gravitational wave, namely D2 and S1S 1 branes. We solve the sewing constraints and determine the bulk-boundary couplings and the boundary three-point couplings. For the D2 brane our solution gives the first explicit results for the structure constants of the twisted symmetric branes in a WZW model. We also compute the boundary four-point functions, providing examples of open string four-point amplitudes in a curved background. We finally discuss the annulus amplitudes, the relation with branes in AdS3AdS_3 and in S3S^3 and the analogy between the open string couplings in the H4H_4 model and the couplings for magnetized and intersecting branes.Comment: 83 pages, 1 figur
    corecore