43 research outputs found

    Development of a parallel database environment

    Get PDF

    Earth imaging with microsatellites: An investigation, design, implementation and in-orbit demonstration of electronic imaging systems for earth observation on-board low-cost microsatellites.

    Get PDF
    This research programme has studied the possibilities and difficulties of using 50 kg microsatellites to perform remote imaging of the Earth. The design constraints of these missions are quite different to those encountered in larger, conventional spacecraft. While the main attractions of microsatellites are low cost and fast response times, they present the following key limitations: Payload mass under 5 kg, Continuous payload power under 5 Watts, peak power up to 15 Watts, Narrow communications bandwidths (9.6 / 38.4 kbps), Attitude control to within 5°, No moving mechanics. The most significant factor is the limited attitude stability. Without sub-degree attitude control, conventional scanning imaging systems cannot preserve scene geometry, and are therefore poorly suited to current microsatellite capabilities. The foremost conclusion of this thesis is that electronic cameras, which capture entire scenes in a single operation, must be used to overcome the effects of the satellite's motion. The potential applications of electronic cameras, including microsatellite remote sensing, have erupted with the recent availability of high sensitivity field-array CCD (charge-coupled device) image sensors. The research programme has established suitable techniques and architectures necessary for CCD sensors, cameras and entire imaging systems to fulfil scientific/commercial remote sensing despite the difficult conditions on microsatellites. The author has refined these theories by designing, building and exploiting in-orbit five generations of electronic cameras. The major objective of meteorological scale imaging was conclusively demonstrated by the Earth imaging camera flown on the UoSAT-5 spacecraft in 1991. Improved cameras have since been carried by the KITSAT-1 (1992) and PoSAT-1 (1993) microsatellites. PoSAT-1 also flies a medium resolution camera (200 metres) which (despite complete success) has highlighted certain limitations of microsatellites for high resolution remote sensing. A reworked, and extensively modularised, design has been developed for the four camera systems deployed on the FASat-Alfa mission (1995). Based on the success of these missions, this thesis presents many recommendations for the design of microsatellite imaging systems. The novelty of this research programme has been the principle of designing practical camera systems to fit on an existing, highly restrictive, satellite platform, rather than conceiving a fictitious small satellite to support a high performance scanning imager. This pragmatic approach has resulted in the first incontestable demonstrations of the feasibility of remote sensing of the Earth from inexpensive microsatellites

    Earth resources: A continuing bibliography with indexes (issue 62)

    Get PDF
    This bibliography lists 544 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Digital data logging and processing, Derbyshire Survey, 1997

    Get PDF
    In 1997, the Deep Submergence Group (DSG) of the Woods Hole Oceanographic Institution (WHOI) surveyed the wreckage field of the M.V. Derbyshire. The motivation for the survey and its results are described elsewhere (Williams et al, 1998). The purpose of this report is to describe the digital data logging and processing systems that were used by the Deep Submergence Group during the survey. The report is divided into four sections: this Introduction, a description of the collection mechanisms, a description of the processing schemes and series of appendices. The appendices include a glossary of terms, a description of data formats, and a comparison of electronic still camera processing choices. Readers desiring information on the equipment used, on the operations, or on the analysis effort performed by the on-board Inspection and Verification (I & V) Team or by the Assessors ashore are directed to (Williams et al, 1998), (Ballard, 1993) and (Bowen, et al, 1993).Funding was provided by the National Science Foundation under Grant No. OCE-9627160 and a Memorandum of Agreement between the United States Government and the United Kingdom Department of the Environment, Transport and the Regions

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    Error processes in the integration of digital cartographic data in geographic information systems.

    Get PDF
    Errors within a Geographic Information System (GIS) arise from several factors. In the first instance receiving data from a variety of different sources results in a degree of incompatibility between such information. Secondly, the very processes used to acquire the information into the GIS may in fact degrade the quality of the data. If geometric overlay (the very raison d'etre of many GISs) is to be performed, such inconsistencies need to be carefully examined and dealt with. A variety of techniques exist for the user to eliminate such problems, but all of these tend to rely on the geometry of the information, rather than on its meaning or nature. This thesis explores the introduction of error into GISs and the consequences this has for any subsequent data analysis. Techniques for error removal at the overlay stage are also examined and improved solutions are offered. Furthermore, the thesis also looks at the role of the data model and the potential detrimental effects this can have, in forcing the data to be organised into a pre-defined structure

    The efficient use of data from different sources for production and application of digital elevation models

    Get PDF
    The emphasis of the investigation reported in this thesis is on the use of digital elevation data of two resolutions originating from two different sources. The high resolution DEM was captured from aerial photographs (first source) at a scale of 1:30,000 and the low resolution DEM was captured from SPOT images (second source). It is well known that the resolution of DEM data depends a great deal on the scale of the images used. The technique for capturing DEMs is static measurement of the spot heights in a regular grid. The grid spacing of the high resolution DEM was 30 m, and of the low resolution DEM was 100 m. The aims of this thesis are as follows: 1. To assess the feasibility of using SPOT stereodata as a source of height information and merged with data from aerial photography. This is carried out by comparison of the elevation data derived from SPOT with the digital elevation data derived from aerial photography. From the comparison of these two sources of height information, some results are derived which show the possible heighting accuracy levels which can realistically be achieved. A systematic error in the estimated average of the elevation differences was found and many tests have been carried out to find the reasons for the presence of this systematic error. 2. To develop methods to manipulate the captured data. 2.1. Gross error (blunder) detection. Blunders made during the data capturing procedure affect the accuracy of the final product. Therefore it is necessary to trap and to remove them. A pointwise local self-checking blunder detection algorithm was developed in order to check the grid elevation data, particularly those which are derived from the second source. 2.2. Data coordinates transformation. The data must be transformed into a common projection in order to be directly comparable. The projection and coordinate systems employed are studied in this project, and the errors caused by the transformations are estimated. 2.3. Data merging. Data of different reliability have to be merged into a single set of data. In this project data from two different sources are merged in order to create a final product of known and uniform accuracy. The effect of the lower resolution source on the high resolution source was studied, in dense and in sparse form. 2.4. Data structure. To structure the data by changing the format in order to be in an acceptable form for DEM creation and display, through the commercially available Laser-Scan package DTMCREATE. 3. DEM production and contouring. To produce DEMs from the initial data and that derived from the two merged sources, and to find the accuracy of the interpolation procedure by comparing the derived interpolated data with the high resolution DEM which has been derived from aerial photography. Finally to interpolate contours directly from the "raw" SPOT data and to compare them with those derived from the aerial photography in order to find out the feasibility and capability of using SPOT data in contouring for topographic maps
    corecore