16,098 research outputs found

    A study of separability criteria for mixed three-qubit states

    Full text link
    We study the noisy GHZ-W mixture. We demonstrate some necessary but not sufficient criteria for different classes of separability of these states. It turns out that the partial transposition criterion of Peres and the criteria of G\"uhne and Seevinck dealing with matrix elements are the strongest ones for different separability classes of this 2 parameter state. As a new result we determine a set of entangled states of positive partial transpose.Comment: 18 pages, 10 figures, PRA styl

    Structural approximations to positive maps and entanglement breaking channels

    Full text link
    Structural approximations to positive, but not completely positive maps are approximate physical realizations of these non-physical maps. They find applications in the design of direct entanglement detection methods. We show that many of these approximations, in the relevant case of optimal positive maps, define an entanglement breaking channel and, consequently, can be implemented via a measurement and state-preparation protocol. We also show how our findings can be useful for the design of better and simpler direct entanglement detection methods.Comment: 18 pages, 3 figure

    Error-Correction in Flash Memories via Codes in the Ulam Metric

    Full text link
    We consider rank modulation codes for flash memories that allow for handling arbitrary charge-drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include derivation of the asymptotic capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of constructed codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations, and permutation codes in the Hamming distance

    Quantum conditional operator and a criterion for separability

    Get PDF
    We analyze the properties of the conditional amplitude operator, the quantum analog of the conditional probability which has been introduced in [quant-ph/9512022]. The spectrum of the conditional operator characterizing a quantum bipartite system is invariant under local unitary transformations and reflects its inseparability. More specifically, it is shown that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. This leads us to consider a related separability criterion based on the positive map Γ:ρ(Trρ)ρ\Gamma:\rho \to (Tr \rho) - \rho, where ρ\rho is an Hermitian operator. Any separable state is mapped by the tensor product of this map and the identity into a non-negative operator, which provides a simple necessary condition for separability. In the special case where one subsystem is a quantum bit, Γ\Gamma reduces to time-reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×22\times 2 and 2×32\times 3 systems. Finally, a simple connection between this map and complex conjugation in the "magic" basis is displayed.Comment: 19 pages, RevTe
    corecore