4,615 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    The multiple data and geographic knowledge approach to a liquid toxic road accident mitigation - two block GIS data processing for an operative intervention

    Get PDF
    One of the current tasks of disaster management is to effectively counter toxic accidents on traffic communications. The paper demonstrates the procedure of the use of geographic data and knowledge with GIS technology for the operational mitigation of accident impacts on the traffic communication with leakage of toxic substance. A simulated leakage of toxic liquid substance on a highway in the Czech Republic was chosen as an example. The process is divided into two units. In the first preparatory block, data on soils and the geological environment are analysed and purpose oriented pre-processed. The data layer generally describes the expected movement of pollutants, e.g. predominant surface runoff, or predominant infiltration and/or a balanced combination of both of them. In the second operational unit, a location of the accident is precisely identified and the estimation of possible routes of pollutant runoff is performed with respect to the current status of the territory. Key points on these routes are identified with the aim to select mitigation measures and optimum access routes modelled for intervention techniques to reach key points in order to prevent contamination of water bodies.Web of Science141644

    Scalable system for smart urban transport management

    Get PDF
    Efficient management of smart transport systems requires the integration of various sensing technologies, as well as fast processing of a high volume of heterogeneous data, in order to perform smart analytics of urban networks in real time. However, dynamic response that relies on intelligent demand-side transport management is particularly challenging due to the increasing flow of transmitted sensor data. In this work, a novel smart service-driven, adaptable middleware architecture is proposed to acquire, store, manipulate, and integrate information from heterogeneous data sources in order to deliver smart analytics aimed at supporting strategic decision-making. The architecture offers adaptive and scalable data integration services for acquiring and processing dynamic data, delivering fast response time, and offering data mining and machine learning models for real-time prediction, combined with advanced visualisation techniques. The proposed solution has been implemented and validated, demonstrating its ability to provide real-time performance on the existing, operational, and large-scale bus network of a European capital city

    Evaluation of patient transport service in hospitals using process mining methods: Patients\u27 perspective

    Get PDF
    Designing healthcare facilities and their processes is a complex task which influences the quality and efficiency of healthcare services. The ongoing demand for healthcare services and cost burdens necessitate the application of analytical methods to enhance the overall service efficiency in hospitals. However, the variability in healthcare processes makes it highly complicated to accomplish this aim. This study addresses the complexity in the patient transport service process at a German hospital, and proposes a method based on process mining to obtain a holistic approach to recognise bottlenecks and main reasons for delays and resulting high costs associated with idle resources. To this aim, the event log data from the patient transport software system is collected and processed to discover the sequences and the timeline of the activities for the different cases of the transport process. The comparison between the actual and planned processes from the data set of the year 2020 shows that, for example, around 36% of the cases were 10 or more minutes delayed. To find delay issues in the process flow and their root causes the data traces of certain routes are intensively assessed. Additionally, the compliance with the predefined Key Performance Indicators concerning travel time and delay thresholds for individual cases was investigated. The efficiency of assignment of the transport requests to the transportation staff are also evaluated which gives useful understanding regarding staffing potential improvements. The research shows that process mining is an efficient method to provide comprehensive knowledge through process models that serve as Interactive Process Indicators and to extract significant transport pathways. It also suggests a more efficient patient transport concept and provides the decision makers with useful managerial insights to come up with efficient patient-centred analysis of transportation services through data from supporting information systems
    corecore