36 research outputs found

    Not all simplicial polytopes are weakly vertex-decomposable

    Full text link
    In 1980 Provan and Billera defined the notion of weak kk-decomposability for pure simplicial complexes. They showed the diameter of a weakly kk-decomposable simplicial complex Δ\Delta is bounded above by a polynomial function of the number of kk-faces in Δ\Delta and its dimension. For weakly 0-decomposable complexes, this bound is linear in the number of vertices and the dimension. In this paper we exhibit the first examples of non-weakly 0-decomposable simplicial polytopes

    Obstructions to weak decomposability for simplicial polytopes

    Full text link
    Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation polytopes. In this paper, we refine their analysis to prove that these dd-dimensional polytopes are not even weakly O(d)O(\sqrt{d})-decomposable. As a consequence, (weak) decomposability cannot be used to prove a polynomial version of the Hirsch conjecture

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than n−dn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Obstructions to weak decomposability for simplicial polytopes

    No full text
    International audienceProvan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation polytopes. In this paper, we refine their analysis to prove that these dd-dimensional polytopes are not even weakly O(d)O(\sqrt{d})-decomposable. As a consequence, (weak) decomposability cannot be used to prove a polynomial version of the Hirsch Conjecture

    Triangulations

    Get PDF
    The earliest work in topology was often based on explicit combinatorial models – usually triangulations – for the spaces being studied. Although algebraic methods in topology gradually replaced combinatorial ones in the mid-1900s, the emergence of computers later revitalized the study of triangulations. By now there are several distinct mathematical communities actively doing work on different aspects of triangulations. The goal of this workshop was to bring the researchers from these various communities together to stimulate interaction and to benefit from the exchange of ideas and methods

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Courbure discrÚte : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Proceedings of the 4th Twente Workshop on Cooperative Game Theory joint with 3rd Dutch-Russian symposium

    Get PDF
    corecore