2,008 research outputs found

    Charge mobility determination by current extraction under linear increasing voltages: the case of non-equilibrium charges and field-dependent mobilities

    Full text link
    The method of current extraction under linear increasing voltages (CELIV) allows for the simultaneous determination of charge mobilities and charge densities directly in thin films as used in organic photovoltaic cells (OPV). In the past, it has been specifically applied to investigate the interrelation of microstructure and charge transport properties in such systems. Numerical and analytical calculations presented in this work show that the evaluation of CELIV transients with the commonly used analysis scheme is error prone once charge recombination and, possibly, field dependent charge mobilities are taken into account. The most important effects are an apparent time-dependence of charge mobilities and errors in the determined field dependencies. Our results implicate that reports on time-dependent mobility relaxation in OPV materials obtained by the CELIV technique should be carefully revisited and confirmed by other measurement methods.Comment: 15 pages, 9 figure

    Evaluation of ambipolar carrier mobility in alkyl-substituted phthalocyanine thin film

    Full text link
    Yuki Nishikawa, Yuya Nakata, Shigehiro Ikehara, Akihiko Fujii, and Masanori Ozaki "Evaluation of ambipolar carrier mobility in alkyl-substituted phthalocyanine thin film," Journal of Photonics for Energy 8(3), 032214 (15 May 2018). DOI: https://doi.org/10.1117/1.JPE.8.03221

    Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications

    Get PDF
    The present review rationalizes the significance of the metal oxide semiconductor (MOS) interfaces in the field of photovoltaics and photocatalysis. This perspective considers the role of interface science in energy harvesting using organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs). These interfaces include large surface area junctions between photoelectrodes and dyes, the interlayer grain boundaries within the photoanodes, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to overall power conversion efficiency of solar cells. Similarly, MOS photocatalysts exhibit strong variations in their photocatalytic activities as a function of band structure and surface states. Here, the MOS interface plays a vital role in the generation of OH radicals, which forms the basis of the photocatalytic processes. The physical chemistry and materials science of these MOS interfaces and their influence on device performance are also discussed

    Solution-Processed Phototransistors Combining Organic Absorber and Charge Transporting Oxide for Visible to Infrared Light Detection.

    Get PDF
    This report demonstrates high-performance infrared phototransistors that use a broad-band absorbing organic bulk heterojunction (BHJ) layer responsive from the visible to the shortwave infrared, from 500 to 1400 nm. The device structure is based on a bilayer transistor channel that decouples charge photogeneration and transport, enabling independent optimization of each process. The organic BHJ layer is improved by incorporating camphor, a highly polarizable additive that increases carrier lifetime. An indium zinc oxide transport layer with high electron mobility is employed for rapid charge transport. As a result, the phototransistors achieve a dynamic range of 127 dB and reach a specific detectivity of 5 × 1012 Jones under a low power illumination of 20 nW/cm2, outperforming commercial germanium photodiodes in the spectral range below 1300 nm. The photodetector metrics are measured with respect to the applied voltage, incident light power, and temporal bandwidth, demonstrating operation at a video-frame rate of 50 Hz. In particular, the frequency and light dependence of the phototransistor characteristics are analyzed to understand the change in photoconductive gain under different working conditions

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.
    corecore