1,472 research outputs found

    Engineered valley-orbit splittings in quantum confined nanostructures in silicon

    Get PDF
    An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.Comment: 4 pages, 4 figure

    Few-electron quantum dots in III-V ternary alloys: role of fluctuations

    Full text link
    We study experimentally the electron transport properties of gated quantum dots formed in InGaAs/InP and InAsP/InP quantum well structures grown by chemical-beam epitaxy. For the case of the InGaAs quantum well, quantum dots form directly underneath narrow gate electrodes due to potential fluctuations. We measure the Coulomb-blockade diamonds in the few-electron regime of a single quantum dot and observe photon-assisted tunneling peaks under microwave irradiation. A singlet-triplet transition at high magnetic field and Coulomb-blockade effects in the quantum Hall regime are also observed. For the InAsP quantum well, an incidental triple quantum dot forms also due to potential fluctuations within a single dot layout. Tunable quadruple points are observed via transport measurements.Comment: 3.3 pages, 3 figures. Added two new subfigures, new references, and improved the tex

    Detection of charge motion in a non-metallic silicon isolated double quantum dot

    Get PDF
    As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures is lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2×n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2×\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar

    PtSi Clustering In Silicon Probed by Transport Spectroscopy

    Get PDF
    Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the device characteristic size is reduced below a few tens of nanometers. Here we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states

    Quantum transport through MoS2_2 constrictions defined by photodoping

    Full text link
    We present a device scheme to explore mesoscopic transport through molybdenum disulfide (MoS2_2) constrictions using photodoping. The devices are based on van-der-Waals heterostructures where few-layer MoS2_2 flakes are partially encapsulated by hexagonal boron nitride (hBN) and covered by a few-layer graphene flake to fabricate electrical contacts. Since the as-fabricated devices are insulating at low temperatures, we use photo-induced remote doping in the hBN substrate to create free charge carriers in the MoS2_2 layer. On top of the device, we place additional metal structures, which define the shape of the constriction and act as shadow masks during photodoping of the underlying MoS2_2/hBN heterostructure. Low temperature two- and four-terminal transport measurements show evidence of quantum confinement effects.Comment: 9 pages, 6 figure
    corecore