1,643 research outputs found

    Secure Pick Up: Implicit Authentication When You Start Using the Smartphone

    Full text link
    We propose Secure Pick Up (SPU), a convenient, lightweight, in-device, non-intrusive and automatic-learning system for smartphone user authentication. Operating in the background, our system implicitly observes users' phone pick-up movements, the way they bend their arms when they pick up a smartphone to interact with the device, to authenticate the users. Our SPU outperforms the state-of-the-art implicit authentication mechanisms in three main aspects: 1) SPU automatically learns the user's behavioral pattern without requiring a large amount of training data (especially those of other users) as previous methods did, making it more deployable. Towards this end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW) algorithm to effectively quantify similarities between users' pick-up movements; 2) SPU does not rely on a remote server for providing further computational power, making SPU efficient and usable even without network access; and 3) our system can adaptively update a user's authentication model to accommodate user's behavioral drift over time with negligible overhead. Through extensive experiments on real world datasets, we demonstrate that SPU can achieve authentication accuracy up to 96.3% with a very low latency of 2.4 milliseconds. It reduces the number of times a user has to do explicit authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies (SACMAT) 201

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    Exploring New Paradigms for Mobile Edge Computing

    Get PDF
    Edge computing has been rapidly growing in recent years to meet the surging demands from mobile apps and Internet of Things (IoT). Similar to the Cloud, edge computing provides computation, storage, data, and application services to the end-users. However, edge computing is usually deployed at the edge of the network, which can provide low-latency and high-bandwidth services for end devices. So far, edge computing is still not widely adopted. One significant challenge is that the edge computing environment is usually heterogeneous, involving various operating systems and platforms, which complicates app development and maintenance. in this dissertation, we explore to combine edge computing with virtualization techniques to provide a homogeneous environment, where edge nodes and end devices run exactly the same operating system. We develop three systems based on the homogeneous edge computing environment to improve the security and usability of end-device applications. First, we introduce vTrust, a new mobile Trusted Execution Environment (TEE), which offloads the general execution and storage of a mobile app to a nearby edge node and secures the I/O between the edge node and the mobile device with the aid of a trusted hypervisor on the mobile device. Specifically, vTrust establishes an encrypted I/O channel between the local hypervisor and the edge node, such that any sensitive data flowing through the hosted mobile OS is encrypted. Second, we present MobiPlay, a record-and-replay tool for mobile app testing. By collaborating a mobile phone with an edge node, MobiPlay can effectively record and replay all types of input data on the mobile phone without modifying the mobile operating system. to do so, MobiPlay runs the to-be-tested application on the edge node under exactly the same environment as the mobile device and allows the tester to operate the application on a mobile device. Last, we propose vRent, a new mechanism to leverage smartphone resources as edge node based on Xen virtualization and MiniOS. vRent aims to mitigate the shortage of available edge nodes. vRent enforces isolation and security by making the users\u27 android OSes as Guest OSes and rents the resources to a third-party in the form of MiniOSes
    corecore