54 research outputs found

    On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective

    Full text link
    We implement and benchmark parallel I/O methods for the fully-manycore driven particle-in-cell code PIConGPU. Identifying throughput and overall I/O size as a major challenge for applications on today's and future HPC systems, we present a scaling law characterizing performance bottlenecks in state-of-the-art approaches for data reduction. Consequently, we propose, implement and verify multi-threaded data-transformations for the I/O library ADIOS as a feasible way to trade underutilized host-side compute potential on heterogeneous systems for reduced I/O latency.Comment: 15 pages, 5 figures, accepted for DRBSD-1 in conjunction with ISC'1

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Survey of storage systems for high-performance computing

    Get PDF
    In current supercomputers, storage is typically provided by parallel distributed file systems for hot data and tape archives for cold data. These file systems are often compatible with local file systems due to their use of the POSIX interface and semantics, which eases development and debugging because applications can easily run both on workstations and supercomputers. There is a wide variety of file systems to choose from, each tuned for different use cases and implementing different optimizations. However, the overall application performance is often held back by I/O bottlenecks due to insufficient performance of file systems or I/O libraries for highly parallel workloads. Performance problems are dealt with using novel storage hardware technologies as well as alternative I/O semantics and interfaces. These approaches have to be integrated into the storage stack seamlessly to make them convenient to use. Upcoming storage systems abandon the traditional POSIX interface and semantics in favor of alternative concepts such as object and key-value storage; moreover, they heavily rely on technologies such as NVM and burst buffers to improve performance. Additional tiers of storage hardware will increase the importance of hierarchical storage management. Many of these changes will be disruptive and require application developers to rethink their approaches to data management and I/O. A thorough understanding of today's storage infrastructures, including their strengths and weaknesses, is crucially important for designing and implementing scalable storage systems suitable for demands of exascale computing

    Combining in-situ and in-transit processing to enable extreme-scale scientific analysis

    Get PDF
    pre-printWith the onset of extreme-scale computing, I/O constraints make it increasingly difficult for scientists to save a sufficient amount of raw simulation data to persistent storage. One potential solution is to change the data analysis pipeline from a post-process centric to a concurrent approach based on either in-situ or in-transit processing. In this context computations are considered in-situ if they utilize the primary compute resources, while in-transit processing refers to offloading computations to a set of secondary resources using asynchronous data transfers. In this paper we explore the design and implementation of three common analysis techniques typically performed on large-scale scientific simulations: topological analysis, descriptive statistics, and visualization. We summarize algorithmic developments, describe a resource scheduling system to coordinate the execution of various analysis workflows, and discuss our implementation using the DataSpaces and ADIOS frameworks that support efficient data movement between in-situ and in-transit computations. We demonstrate the efficiency of our lightweight, flexible framework by deploying it on the Jaguar XK6 to analyze data generated by S3D, a massively parallel turbulent combustion code. Our framework allows scientists dealing with the data deluge at extreme scale to perform analyses at increased temporal resolutions, mitigate I/O costs, and significantly improve the time to insight

    System-Level Support for Composition of Applications

    Get PDF
    ABSTRACT Current HPC system software lacks support for emerging application deployment scenarios that combine one or more simulations with in situ analytics, sometimes called multi-component or multi-enclave applications. This paper presents an initial design study, implementation, and evaluation of mechanisms supporting composite multi-enclave applications in the Hobbes exascale operating system. These mechanisms include virtualization techniques isolating application custom enclaves while using the vendor-supplied host operating system and high-performance inter-VM communication mechanisms. Our initial single-node performance evaluation of these mechanisms on multi-enclave science applications, both real and proxy, demonstrate the ability to support multi-enclave HPC job composition with minimal performance overhead

    Dataflow methods in HPC, visualisation and analysis

    Get PDF
    The processing power available to scientists and engineers using supercomputers over the last few decades has grown exponentially, permitting significantly more sophisticated simulations, and as a consequence, generating proportionally larger output datasets. This change has taken place in tandem with a gradual shift in the design and implementation of simulation and post-processing software, with a shift from simulation as a first step and visualisation/analysis as a second, towards in-situ on the fly methods that provide immediate visual feedback, place less strain on file-systems and reduce overall data-movement and copying. Concurrently, processor speed increases have dramatically slowed and multi and many-core architectures have instead become the norm for virtually all High Performance computing (HPC) machines. This in turn has led to a shift away from the traditional distributed one rank per node model, to one rank per process, using multiple processes per multicore node, and then back towards one rank per node again, using distributed and multi-threaded frameworks combined. This thesis consists of a series of publications that demonstrate how software design for analysis and visualisation has tracked these architectural changes and pushed the boundaries of HPC visualisation using dataflow techniques in distributed environments. The first publication shows how support for the time dimension in parallel pipelines can be implemented, demonstrating how information flow within an application can be leveraged to optimise performance and add features such as analysis of time-dependent flows and comparison of datasets at different timesteps. A method of integrating dataflow pipelines with in-situ visualisation is subsequently presented, using asynchronous coupling of user driven GUI controls and a live simulation running on a supercomputer. The loose coupling of analysis and simulation allows for reduced IO, immediate feedback and the ability to change simulation parameters on the fly. A significant drawback of parallel pipelines is the inefficiency caused by improper load-balancing, particularly during interactive analysis where the user may select between different features of interest, this problem is addressed in the fourth publication by integrating a high performance partitioning library into the visualization pipeline and extending the information flow up and down the pipeline to support it. This extension is demonstrated in the third publication (published earlier) on massive meshes with extremely high complexity and shows that general purpose visualization tools such as ParaView can be made to compete with bespoke software written for a dedicated task. The future of software running on many-core architectures will involve task-based runtimes, with dynamic load-balancing, asynchronous execution based on dataflow graphs, work stealing and concurrent data sharing between simulation and analysis. The final paper of this thesis presents an optimisation for one such runtime, in support of these future HPC applications

    Middleware for large scale in situ analytics workflows

    Get PDF
    The trend to exascale is causing researchers to rethink the entire computa- tional science stack, as future generation machines will contain both diverse hardware environments and run times that manage them. Additionally, the science applications themselves are stepping away from the traditional bulk-synchronous model and are moving towards a more dynamic and decoupled environment where analysis routines are run in situ alongside the large scale simulations. This thesis presents CoApps, a middleware that allows in situ science analytics applications to operate in a location-flexible manner. Additionally, CoApps explores methods to extract information from, and issue management operations to, lower level run times that are managing the diverse hardware expected to be found on next generation exascale machines. This work leverages experience with several extremely scalable applications in materials and fusion, and has been evaluated on machines ranging from local Linux clusters to the supercomputer Titan.Ph.D

    Enabling advanced visualization tools in a web-based simulation monitoring system

    Get PDF
    Journal ArticleSimulations that require massive amounts of computing power and generate tens of terabytes of data are now part of the daily lives of scientists. Analyzing and visualizing the results of these simulations as they are computed can lead not only to early insights but also to useful knowledge that can be provided as feedback to the simulation, avoiding unnecessary use of computing power. Our work is aimed at making advanced visualization tools available to scientists in a user-friendly, web-based environment where they can be accessed anytime from anywhere. In the context of turbulent combustion for example, visualization is used to understand the coupling between turbulence and the turbulent mixing of scalars. Although isosurface generation is a useful technique in this scenario, computing and rendering isosurfaces one at a time is expensive and not particularly well-suited for such a web-based framework. In this paper we propose the use of a summary structure, called contour tree, that captures the topological structure of a scalar field and guides the user in identifying useful isosurfaces. We have also designed an interface which has been integrated with a web-based simulation monitoring system, that allows users to interact with and explore multiple isosurfaces

    X-Composer: Enabling Cross-Environments In-SituWorkflows between HPC and Cloud

    Get PDF
    As large-scale scientific simulations and big data analyses become more popular, it is increasingly more expensive to store huge amounts of raw simulation results to perform post-analysis. To minimize the expensive data I/O, "in-situ" analysis is a promising approach, where data analysis applications analyze the simulation generated data on the fly without storing it first. However, it is challenging to organize, transform, and transport data at scales between two semantically different ecosystems due to the distinct software and hardware difference. To tackle these challenges, we design and implement the X-Composer framework. X-Composer connects cross-ecosystem applications to form an "in-situ" scientific workflow, and provides a unified approach and recipe for supporting such hybrid in-situ workflows on distributed heterogeneous resources. X-Composer reorganizes simulation data as continuous data streams and feeds them seamlessly into the Cloud-based stream processing services to minimize I/O overheads. For evaluation, we use X-Composer to set up and execute a cross-ecosystem workflow, which consists of a parallel Computational Fluid Dynamics simulation running on HPC, and a distributed Dynamic Mode Decomposition analysis application running on Cloud. Our experimental results show that X-Composer can seamlessly couple HPC and Big Data jobs in their own native environments, achieve good scalability, and provide high-fidelity analytics for ongoing simulations in real-time
    • …
    corecore