10,400 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    Yield Enhancement of Digital Microfluidics-Based Biochips Using Space Redundancy and Local Reconfiguration

    Full text link
    As microfluidics-based biochips become more complex, manufacturing yield will have significant influence on production volume and product cost. We propose an interstitial redundancy approach to enhance the yield of biochips that are based on droplet-based microfluidics. In this design method, spare cells are placed in the interstitial sites within the microfluidic array, and they replace neighboring faulty cells via local reconfiguration. The proposed design method is evaluated using a set of concurrent real-life bioassays.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Goal accomplishment tracking for automatic supervision of plan execution

    Get PDF
    It is common practice to break down plans into a series of goals or sub-goals in order to facilitate plan execution, thereby only burdening the individual agents responsible for their execution with small, easily achievable objectives at any one time, or providing a simple way of sharing these objectives amongst a group of these agents. Ensuring that plans are executed correctly is an essential part of any team management. To allow proper tracking of an agent's progress through a pre-planned set of goals, it is imperative to keep track of which of these goals have already been accomplished. This centralised approach is essential when the agent is part of a team of humans and/or robots, and goal accomplishment is not always being tracked at a low level. This paper presents a framework for an automated supervision system to keep track of changes in world states so as to chart progress through a pre-planned set of goals. An implementation of this framework on a mobile service robot is presented, and applied in an experiment which demonstrates its feasibility

    Distributed service orchestration : eventually consistent cloud operation and integration

    Get PDF
    Both researchers and industry players are facing the same obstacles when entering the big data field. Deploying and testing distributed data technologies requires a big up-front investment of both time and knowledge. Existing cloud automation solutions are not well suited for managing complex distributed data solutions. This paper proposes a distributed service orchestration architecture to better handle the complex orchestration logic needed in these cases. A novel service-engine based approach is proposed to cope with the versatility of the individual components. A hybrid integration approach bridges the gap between cloud modeling languages, automation artifacts, image-based schedulers and PaaS solutions. This approach is integrated in the distributed data experimentation platform Tengu, making it more flexible and robust

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc
    • 

    corecore