33,261 research outputs found

    Developing Collaborative XML Editing Systems

    Get PDF
    In many areas the eXtensible Mark-up Language (XML) is becoming the standard exchange and data format. More and more applications not only support XML as an exchange format but also use it as their data model or default file format for graphic, text and database (such as spreadsheet) applications. Computer Supported Cooperative Work is an interdisciplinary field of research dealing with group work, cooperation and their supporting information and communication technologies. One part of it is Real-Time Collaborative Editing, which investigates the design of systems which allow several persons to work simultaneously in real-time on the same document, without the risk of inconsistencies. Existing collaborative editing research applications specialize in one or at best, only a small number of document types; for example graphic, text or spreadsheet documents. This research investigates the development of a software framework which allows collaborative editing of any XML document type in real-time. This presents a more versatile solution to the problems of real-time collaborative editing. This research contributes a new software framework model which will assist software engineers in the development of new collaborative XML editing applications. The devised framework is flexible in the sense that it is easily adaptable to different workflow requirements covering concurrency control, awareness mechanisms and optional locking of document parts. Additionally this thesis contributes a new framework integration strategy that enables enhancements of existing single-user editing applications with real-time collaborative editing features without changing their source code

    Computer-Supported Collaborative Production

    Get PDF
    This paper proposes the concept of collaborative production as a focus of concern within the general area of collaborative work. We position the concept with respect to McGrath's framework for small group dynamics and the more familiar collaboration processes of awareness, coordination, and communication (McGrath 1991). After reviewing research issues and computer-based support for these interacting aspects of collaboration, we turn to a discussion of implications for how to design improved support for collaborative production. We illustrate both the challenges of collaborative production and our design implications with a collaborative map-updating scenario drawn from the work domain of geographical information systems

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    SIMDAT

    No full text

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore