137 research outputs found

    Reparallelization and Migration of OpenMP Programs

    Full text link
    Typical computational grid users target only a single cluster and have to estimate the runtime of their jobs. Job schedulers prefer short-running jobs to maintain a high system utilization. If the user underestimates the runtime, premature termination causes computation loss; overesti-mation is penalized by long queue times. As a solution, we present an automatic reparallelization and migration of OpenMP applications. A reparallelization is dynamically computed for an OpenMP work distribution when the num-ber of CPUs changes. The application can be migrated between clusters when an allocated time slice is exceeded. Migration is based on a coordinated, heterogeneous check-pointing algorithm. Both reparallelization and migration enable the user to freely use computing time at more than a single point of the grid. Our demo applications successfully adapt to the changed CPU setting and smoothly migrate between, for example, clusters in Erlangen, Germany, and Amsterdam, the Netherlands, that use different processors. Benchmarks show that reparallelization and migration im-pose average overheads of about 4 % and 2%. 1

    Methodology for malleable applications on distributed memory systems

    Get PDF
    A la portada logo BSC(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work.(Español) El modelo de programación dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar múltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensión del modelo de programación basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a pequeña y mediana escala, un modelo basado en tareas es más simple y productivo que MPI y elimina la necesidad de distribuir los datos explícitamente y convertir todas las dependencias en mensajes. Además, evita la complejidad de la programacion híbrida MPI+X. En segundo lugar; la capacidad de enviar partes del cálculo entre los nodos permite a la librería balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librería quien maneja todos los aspectos relacionados con distribución y transferencia de datos, es posible la modificación dinámica y transparente de los recursos que utiliza la aplicación. Esta tesis describe el diseño, desarrollo y evaluación de OmpSs-2@Cluster; un modelo de programación y librería que extiende OmpSs-2 permitiendo la ejecución de programas OmpSs-2 existentes en múltiples nodos sin prácticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorización de Cholesky. Este trabajo incluye la extensión de OmpSs-2@Cluster para interactuar con MPI y la librería de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecución de una aplicación de mecánica de sólidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implementó otra extensión de la librería para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El único cambio requerido en la aplicación es la llamada explicita a una función de la interfaz que controla la adición o eliminación de nodos. Además, se agregó la funcionalidad de guardar y recuperar parte del estado de la aplicación de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribución de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster amplía el modelo de programación de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecución de programas OmpSs-2 en múltiples nodos prácticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite además el balanceo dinámico de carga en aplicaciones híbridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librería tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.Arquitectura de computador

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Fault Tolerance for High-Performance Applications Using Structured Parallelism Models

    Get PDF
    In the last years parallel computing has increasingly exploited the high-level models of structured parallel programming, an example of which are algorithmic skeletons. This trend has been motivated by the properties featuring structured parallelism models, which can be used to derive several (static and dynamic) optimizations at various implementation levels. In this thesis we study the properties of structured parallel models useful for attacking the issue of providing a fault tolerance support oriented towards High-Performance applications. This issue has been traditionally faced in two ways: (i) in the context of unstructured parallelism models (e.g. MPI), which computation model is essentially based on a distributed set of processes communicating through message-passing, with an approach based on checkpointing and rollback recovery or software replication; (ii) in the context of high-level models, based on a specific parallelism model (e.g. data-flow) and/or an implementation model (e.g. master-slave), by introducing specific techniques based on the properties of the programming and computation models themselves. In this thesis we make a step towards a more abstract viewpoint and we highlight the properties of structured parallel models interesting for fault tolerance purposes. We consider two classes of parallel programs (namely task parallel and data parallel) and we introduce a fault tolerance support based on checkpointing and rollback recovery. The support is derived according to the high-level properties of the parallel models: we call this derivation specialization of fault tolerance techniques, highlighting the difference with classical solutions supporting structure-unaware computations. As a consequence of this specialization, the introduced fault tolerance techniques can be configured and optimized to meet specific needs at different implementation levels. That is, the supports we present do not target a single computing platform or a specific class of them. Indeed the specializations are the mechanism to target specific issues of the exploited environment and of the implemented applications, as proper choices of the protocols and their configurations

    A new approach to reversible computing with applications to speculative parallel simulation

    Get PDF
    In this thesis, we propose an innovative approach to reversible computing that shifts the focus from the operations to the memory outcome of a generic program. This choice allows us to overcome some typical challenges of "plain" reversible computing. Our methodology is to instrument a generic application with the help of an instrumentation tool, namely Hijacker, which we have redesigned and developed for the purpose. Through compile-time instrumentation, we enhance the program's code to keep track of the memory trace it produces until the end. Regardless of the complexity behind the generation of each computational step of the program, we can build inverse machine instructions just by inspecting the instruction that is attempting to write some value to memory. Therefore from this information, we craft an ad-hoc instruction that conveys this old value and the knowledge of where to replace it. This instruction will become part of a more comprehensive structure, namely the reverse window. Through this structure, we have sufficient information to cancel all the updates done by the generic program during its execution. In this writing, we will discuss the structure of the reverse window, as the building block for the whole reversing framework we designed and finally realized. Albeit we settle our solution in the specific context of the parallel discrete event simulation (PDES) adopting the Time Warp synchronization protocol, this framework paves the way for further general-purpose development and employment. We also present two additional innovative contributions coming from our innovative reversibility approach, both of them still embrace traditional state saving-based rollback strategy. The first contribution aims to harness the advantages of both the possible approaches. We implement the rollback operation combining state saving together with our reversible support through a mathematical model. This model enables the system to choose in autonomicity the best rollback strategy, by the mutable runtime dynamics of programs. The second contribution explores an orthogonal direction, still related to reversible computing aspects. In particular, we will address the problem of reversing shared libraries. Indeed, leading from their nature, shared objects are visible to the whole system and so does every possible external modification of their code. As a consequence, it is not possible to instrument them without affecting other unaware applications. We propose a different method to deal with the instrumentation of shared objects. All our innovative proposals have been assessed using the last generation of the open source ROOT-Sim PDES platform, where we integrated our solutions. ROOT-Sim is a C-based package implementing a general purpose simulation environment based on the Time Warp synchronization protocol
    corecore