11,206 research outputs found

    Random Geometric Graphs and the Initialization Problem for Wireless Networks

    No full text
    32 pages. Tutorial invitéInternational audienceThe initialization problem, also known as naming, assigns one unique identifier (ranging from 1 to nn) to a set of n indistinguishable nodes (stations or processors) in a given wireless network NN. NN is composed of nn nodes randomly deployed within a square (or a cube) XX. We assume the time to be slotted and NN to be synchronous; two nodes are able to communicate if they are within a distance at most rr of each other (rr is the transmitting/receiving range). Moreover, if two or more neighbors of a processor uu transmit concurrently at the same round, uu does not receive either messages. After the analysis of various critical transmitting/sensing ranges for connectivity and coverage of randomly deployed sensor networks, we design sub-linear randomized initialization and gossip algorithms achieving O(n1/2log(n)1/2)O(n^1/2 \log(n)^1/2) and O(n1/3log(n)2/3)roundsinthetwodimensionalandthethreedimensionalcases,respectively.Next,weproposeenergyefficientinitializationandgossipalgorithmsrunninginO(n^1/3 \log(n)^2/3) rounds in the two-dimensional and the three-dimensional cases, respectively. Next, we propose energy-efficient initialization and gossip algorithms running in O(n^3/4 \log (n)^1/4)rounds,withnostationbeingawakeformorethanO(n1/4log(n)3/4) rounds, with no station being awake for more than O(n^1/4 \log (n)^3/4) rounds

    Optimal Initialization and Gossiping Algorithms for Random Radio Networks

    No full text
    The initialization problem, also known as naming, consists to give a unique identifier ranging from 11 to nn to a set of nn indistinguishable nodes in a given network. We consider a network where nn nodes (processors) are randomly deployed in a square (resp. cube) XX. We assume that the time is slotted and the network is synchronous, two nodes are able to communicate if they are within distance at most of rr of each other (rr is the transmitting/receiving range). Moreover, if two or more neighbors of a processor uu transmit concurrently at the same time slot, then uu would not receive either messages. We suppose also that the anonymous nodes know neither the topology of the network nor the number of nodes in the network. Under this extremal scenario, we first show how the transmitting range of the deployed processors affects the typical characteristics of the network. Then, by allowing the nodes to transmit at various ranges we design sub-linear randomized initialization protocols~: In the two, resp. three, dimensional case, our randomized initialization algorithms run in O(n1/2logn1/2)O(n^{1/2} \log{n}^{1/2}), resp. O(n1/3logn2/3)O(n^{1/3} \log{n}^{2/3}), time slots. These latter protocols are based upon an optimal gossiping algorithm which is of independent interest

    Extremal Properties of Three Dimensional Sensor Networks with Applications

    Full text link
    In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that nn nodes, each capable of sensing events within a radius of rr, are randomly and uniformly distributed in a 3-dimensional region R\mathcal{R} of volume VV, how large must the sensing range be to ensure a given degree of coverage of the region to monitor? For a given transmission range, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks

    Outage and Local Throughput and Capacity of Random Wireless Networks

    Full text link
    Outage probabilities and single-hop throughput are two important performance metrics that have been evaluated for certain specific types of wireless networks. However, there is a lack of comprehensive results for larger classes of networks, and there is no systematic approach that permits the convenient comparison of the performance of networks with different geometries and levels of randomness. The uncertainty cube is introduced to categorize the uncertainty present in a network. The three axes of the cube represent the three main potential sources of uncertainty in interference-limited networks: the node distribution, the channel gains (fading), and the channel access (set of transmitting nodes). For the performance analysis, a new parameter, the so-called {\em spatial contention}, is defined. It measures the slope of the outage probability in an ALOHA network as a function of the transmit probability pp at p=0p=0. Outage is defined as the event that the signal-to-interference ratio (SIR) is below a certain threshold in a given time slot. It is shown that the spatial contention is sufficient to characterize outage and throughput in large classes of wireless networks, corresponding to different positions on the uncertainty cube. Existing results are placed in this framework, and new ones are derived. Further, interpreting the outage probability as the SIR distribution, the ergodic capacity of unit-distance links is determined and compared to the throughput achievable for fixed (yet optimized) transmission rates.Comment: 22 pages, 6 figures. Submitted to IEEE Trans. Wireles

    Optimal Power Allocation over Multiple Identical Gilbert-Elliott Channels

    Full text link
    We study the fundamental problem of power allocation over multiple Gilbert-Elliott communication channels. In a communication system with time varying channel qualities, it is important to allocate the limited transmission power to channels that will be in good state. However, it is very challenging to do so because channel states are usually unknown when the power allocation decision is made. In this paper, we derive an optimal power allocation policy that can maximize the expected discounted number of bits transmitted over an infinite time span by allocating the transmission power only to those channels that are believed to be good in the coming time slot. We use the concept belief to represent the probability that a channel will be good and derive an optimal power allocation policy that establishes a mapping from the channel belief to an allocation decision. Specifically, we first model this problem as a partially observable Markov decision processes (POMDP), and analytically investigate the structure of the optimal policy. Then a simple threshold-based policy is derived for a three-channel communication system. By formulating and solving a linear programming formulation of this power allocation problem, we further verified the derived structure of the optimal policy.Comment: 10 pages, 7 figure

    High-resolution thermal expansion measurements under Helium-gas pressure

    Full text link
    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K T\leq T \leq 300 K and hydrostatic pressure PP \leq 250 MPa. Helium (4^4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures PP \simeq 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3_3(CO3_3)2_2(OH)2_2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.Comment: 8 pages, 7 figures, published in Rev. Sci. Instrum with minor change

    Pseudo-backscatter laser Doppler velocimeter employing antiparallel-reflector in the forward direction

    Get PDF
    A laser Doppler velocimeter for measuring the velocity of a flowing fluid was discussed. It comprises laser means for providing first and second beams of collimated coherent monochromatic electromagnetic radiation which are focused to intersect at a predetermined location in a flowing fluid. The movement of the particles of the fluid serve to scatter radiation in substantially all directions. The scattered radiation is shifted in frequency from that of the first beam by an amount corresponding to the velocity of the fluid at the predetermined location. A corner cube is disposed generally forward of the predetermined location, the corner cube responding to a portion of the radiation scattered in the forward direction and being operative to reflect the portion in a direction substantially antiparallel to the forward direction
    corecore