148 research outputs found

    Unmanned aerial vehicle-aided cooperative regenerative relaying network under various environments

    Get PDF
    This paper studies a cooperative relay network that comprises an unmanned aerial vehicle (UAV) enabling amplify-and-forward (AF) and power splitting (PS) based energy harvesting. The considered system can be constructed in various environments such as suburban, urban, dense urban, and high-rise urban where the air-to-ground channels are model by a mixture of Rayleigh and Nakagami-m fading. Then, outage probability and ergodic capacity are provided under different environment-based parameters. Optimal PS ratios are also provided under normal and high transmit power regimes. Finally, the accuracy of the analytical results is validated through Monte Carlo methods

    Analysis of Asymmetric Dual-Hop Energy Harvesting-Based Wireless Communication Systems in Mixed Fading Environments

    Get PDF
    This work investigates the performance of a dual-hop energy harvesting-based fixed-gain amplify-and-forward relaying communication system, subject to fading impairments. We consider a source node (S) communicating with a destination node (D), either directly or through a fixed distant relay (R), which harvests energy from its received signals and uses it to amplify and forward the received signals to D. We also consider maximal-ratio combining at D to combine the signals coming from S and R. Both power-splitting and time-switching energy harvesting protocols are investigated. The S-R link is modeled by Nakagami-m fading model, while the R-D and S-D links experience α-μ fading. Closed-form expressions for the statistical properties of the total signal-to-noise ratio are derived, based on which novel closed-form expressions are then derived for the average symbol error rate as well as for the average channel capacity, considering four different adaptive transmission policies. The derived expressions are validated through Monte Carlo simulations.Peer reviewe

    Analysis of Asymmetric Dual-Hop Energy Harvesting-Based Wireless Communication Systems in Mixed Fading Environments

    Get PDF
    This work investigates the performance of a dual-hop energy harvesting-based fixed-gain amplify-and-forward relaying communication system, subject to fading impairments. We consider a source node (S) communicating with a destination node (D), either directly or through a fixed distant relay (R), which harvests energy from its received signals and uses it to amplify and forward the received signals to D. We also consider maximal-ratio combining at D to combine the signals coming from S and R. Both power-splitting and time-switching energy harvesting protocols are investigated. The S-R link is modeled by Nakagami-m fading model, while the R-D and S-D links experience α-μ fading. Closed-form expressions for the statistical properties of the total signal-to-noise ratio are derived, based on which novel closed-form expressions are then derived for the average symbol error rate as well as for the average channel capacity, considering four different adaptive transmission policies. The derived expressions are validated through Monte Carlo simulations.acceptedVersionPeer reviewe

    Integrating Drones and Wireless Power Transfer into Beyond 5G Networks

    Get PDF
    As fifth generation (5G) standards have been established and 5G commercial products are just around the corner, both academia and industry have started to look at requirements for beyond 5G networks. Network flexibility and long battery life are among the key requirements for beyond 5G wireless communication systems. These critical requirements, which have not been sufficiently addressed in the previous generations, are the focus of this thesis. The first half of this thesis explores two important use cases of drones to provide flexible communication networks. First, the performance of a cellular network with underlay drone cell for temporary events inside a stadium is studied. Using stochastic geometry, a general analytical framework is proposed to analyze the uplink and the downlink coverage probabilities for both the aerial and the terrestrial systems. Our results show that for urban environment and dense urban environment, the drone is best deployed at a low height (e.g., 200 m or lower), regardless of the distance between the center of the stadium and the terrestrial base station. However, for suburban environment and high-rise urban environment, the best drone altitude varies. Second, the performance of emergency information dissemination in public safety scenarios using drone is studied. A drone-assisted multihop multicast device-to-device (D2D) network is considered, where an emergency alert message broadcasted by a drone at the first time slot is multicasted by the D2D users that have successfully received the message through multihop. The impact of different system parameters on the link and the network performance is investigated. Our results demonstrate that a higher drone altitude provides better link and network coverage probabilities and lower mean local delay. Under practical setups, the cell edge user located 2 km from the ground projection of the drone has a link coverage probability around 90% after 5 time slots and a mean local delay of 2.32 time slots with a drone height as low as 200 m. The second half of this thesis investigates wireless power transfer networks. Specifically, the use of power beacons in a millimeter wave wireless ad hoc network is considered, where transmitters adopt the harvest-then-transmit protocol. First, the characteristic of the aggregate received power from power beacons is analyzed and the lognormal distribution is found to provide the best complementary cumulative distribution function approximation compared to other distributions considered in the literature. Then, a tractable model with discrete transmit power for each transmitter is proposed to compute the channel coverage probability and the total coverage probability. Our results show that our model provides a good accuracy and reveal the impact of different system parameters on the total coverage probability. Our results also illustrate that under practical setups, for power beacon transmit power of 50 dBm and transmitters with maximum transmit power between 20 - 40 dBm, which are safe for human exposure, the total coverage probability is around 90%. Thus, it is feasible and safe to power transmitters in a millimeter wave ad hoc network using power beacons

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be significantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus first on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study first focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It first derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system benefits substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides significant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, specifically, towards the future green communication era where the optimization of the scarce resources is critical

    Unicast Barrage Relay Networks: Outage Analysis and Optimization

    Full text link
    Barrage relays networks (BRNs) are ad hoc networks built on a rapid cooperative flooding primitive as opposed to the traditional point-to-point link abstraction. Controlled barrage regions (CBRs) can be used to contain this flooding primitive for unicast and multicast, thereby enabling spatial reuse. In this paper, the behavior of individual CBRs is described as a Markov process that models the potential cooperative relay transmissions. The outage probability for a CBR is found in closed form for a given topology, and the probability takes into account fading and co-channel interference (CCI) between adjacent CBRs. Having adopted this accurate analytical framework, this paper proceeds to optimize a BRN by finding the optimal size of each CBR, the number of relays contained within each CBR, the optimal relay locations when they are constrained to lie on a straight line, and the code rate that maximizes the transport capacity.Comment: 7 pages, 4 figures, 1 table, in IEEE Military Commun. Conf. (MILCOM), 201
    corecore