65 research outputs found

    A semi-blind channel estimation method for multiuser multiantenna OFDM systems

    Get PDF
    A subspace-based blind method is proposed for estimating the channel responses of a multiuser and multiantenna orthogonal frequency division multiplexing (OFDM) uplink system. It gives estimations to all channel responses subject to a scalar matrix ambiguity and does not need precise channel order information (only upper bound for the orders is required). Furthermore, the scalar ambiguity matrix can be easily resolved by using only one pilot OFDM block, given that the number of users is smaller than the number of symbols in the pilot symbol block. Equalization methods are discussed based on the estimated channels. By using partial knowledge of the channels, a multipath subspace method is proposed that reduces the computational complexity. Simulations show that the methods are effective and robust.published_or_final_versio

    Recursive receivers for diversity channels with correlated flat fading

    Get PDF
    Copyright © 2003 IEEEThis paper addresses the design and performance of time-recursive receivers for diversity based communication systems with flat Rayleigh or Ricean fading. The paper introduces a general state-space model for such systems, where there is temporal correlation in the channel gain. Such an approach encompasses a wide range of diversity systems such as spatial diversity, frequency diversity, and code diversity systems which are used in practice. The paper describes a number of noncoherent receiver structures derived from both sequence and a posteriori probability-based cost functions and compares their performance using an orthogonal frequency-division multiplex example. In this example, the paper shows how a standard physical delay-Doppler scattering channel model can be approximated by the proposed state-space model. The simulations show that significant performance gains can be made by exploiting temporal, as well as diversity channel correlations. The paper argues that such time-recursive receivers offer some advantages over block processing schemes such as computational and memory requirement reductions and the easier incorporation of adaptivity in the receiver structures.Nguyen, V.K.; White, L.B.; Jaffrot, E.; Soamiadana, M.; Fijalkow, I

    Blind channel estimation for MIMO OFDM communication systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    A blind channel estimation method for space-time coding systems.

    Get PDF
    Zheng Ming.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 63-66).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1 --- Review of space-time coding and blind channel estimation --- p.1Chapter 1.2 --- Introduction of space-time coding system --- p.4Chapter 1.3 --- Diversity gain of space-time coding --- p.6Chapter 1.4 --- Re-estimation --- p.7Chapter 1.5 --- Notations --- p.8Chapter 1.6 --- Outline of thesis --- p.8Chapter 2. --- Estimation for BPSK Signals --- p.10Chapter 2.1 --- Introduction to maximum likelihood estimation --- p.10Chapter 2.2 --- System model --- p.11Chapter 2.3 --- Deterministic ML algorithm --- p.14Chapter 2.4 --- Re-estimation --- p.16Chapter 2.5 --- Application to other constellations --- p.18Chapter 2.6 --- Simulation results --- p.18Chapter 2.7 --- Summary --- p.21Chapter 3. --- Estimation for Flat Fading Channels --- p.22Chapter 3.1 --- Introduction of constant modulus algorithm (CMA) --- p.22Chapter 3.2 --- System model for flat fading channels --- p.24Chapter 3.3 --- Blind estimation with CMA --- p.26Chapter 3.3.1 --- Problem statement --- p.26Chapter 3.3.2 --- Estimating channel with CMA --- p.28Chapter 3.3.3 --- Solving the ambiguity problem --- p.32Chapter 3.4 --- Re-estimation for flat fading channels --- p.39Chapter 3.5 --- Estimation algorithm --- p.39Chapter 3.6 --- Application to multi-antenna system --- p.41Chapter 3.7 --- Simulation results --- p.42Chapter 3.8 --- Summary --- p.46Chapter 4. --- Estimation lor Frequency Selective Fading Channels --- p.48Chapter 4.1 --- Introduction of space-time coded OFDM --- p.48Chapter 4.2 --- System model --- p.51Chapter 4.3 --- Estimation Algorithm --- p.54Chapter 4.4 --- Simulation results --- p.56Chapter 4.5 --- Summary --- p.59Chapter 5. --- Conclus ions and Future Work --- p.60Chapter 5.1 --- Conclusions --- p.60Chapter 5.2 --- Future work --- p.61Bibliography: --- p.6

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Subspace-based semi-blind channel estimation for STC-OFDM

    Get PDF
    A subspace-based blind method is proposed for estimating the channel responses of a STC-OFDM system with two transmit antennas and one receive antenna. It gives estimations to the two channel responses subject to two ambiguity parameters. The method is valid whether the two channel transfer functions are coprime or not and does not require precise channel order information (only an upper bound for the orders is required). Furthermore, a method is presented to resolve the ambiguities by using two or more pilot symbols. Simulations show that the methods are effective and robust.published_or_final_versio

    Advanced index modulation techniques for future wireless networks

    Get PDF
    In the research study proposed in this Ph.D Thesis, we consider Index Modulation as a novel tool to enhance energy and spectral efficiencies for upcoming 5G networks, including wireless sensor networks and internet of things. In this vein, spatial modulation was proposed to enhance the capacity of wireless systems to partially achieve the capacity of MIMO systems but at lower cost, making it a technique that has attracted significant attention over the past few years. As such, SM schemes have been regarded as possible candidates for spectrum- and energy-efficient next generation MIMO systems. However, the implementation of the SM is also challenging because of its heavy dependence on channel characteristics, channel correlation, corrupted CSI and the need to have adequate spacing between antennas. Moreover, the SM requires multiple antennas at the transmitter which adds cost to the hardware implementation. In addition, the number of mapped bits in SM is limited by the physical size of the wireless device where only small number of antennas can be used. The switching time wasted by RF antenna switches adds to the complexity of the issue. In this Thesis, we study the drawbacks of SM in the articles indicated, namely Performance Comparison of Spatial Modulation Detectors Under Channel Impairments that is placed in the Appendix at the end of Thesis as it is a conference paper, and The Impact of Antenna Switching Time on Spatial Modulation that is put in Chapter 1. In the first article, we have shown that channel impairments have serious impacts on the BER performance and on the capacity of the SM system and that the SM is too sensitive to both imperfect and correlated channels. In the second article, we have demonstrated that the switching time defined as the time needed by the system to turn off an antenna and turn on another one, which is an inherent property of RF industrial switches used in SM systems, is in the order of nanoseconds and naturally influences the transmission rate of SM systems because of introducing systematic transmission gaps or pauses. Given the speed limitation of practical RF switches in performing transitions, antenna transition-based technologies like SM schemes are capped in terms of data rate performance. In fact, the effective data rate of SM will remain hostage to developments in industrial RF switches. This brings restrictions to the implementation and operation issues when extremely high data rates become a necessity. It is shown by the assemblage of our results that the switching time Tsw which is a requirement for transitions between antennas to happen, dictates restrictions on data rate, capacity and spectral efficiency of SM systems. Furthermore, we propose baseband non-hardware-based indexing modulation schemes based on frequency-index modulation, coherent chaotic modulation and non-coherent differential chaotic modulation schemes as potential alternatives to SM, that would also fit wireless sensor networks and internet of things applications. In this regard, we have proposed three articles. The first article which represents frequency index modulation is called Frequency Index Modulation for Low Complexity Low Energy Communication Networks and is placed in Chapter 2 of this Thesis. In this article, we explore a low complexity multi-user communication system based on frequency index modulation that suits Internet of Things (IoT) applications and we show that such a system would constitute an excellent candidate for wireless sensor applications, where it represents a simpler substitution for frequency-hopping (FH) based architectures, in which the hops carry extra bits. The third article which concerns coherent chaotic modulation is called Design of an Initial-Condition Index Chaos Shift Keying Modulation and is located in Chapter 3. In this article, an initial condition index chaos shift keying modulation is proposed. This design aims to increase the spectral and energy efficiencies to unprecedented levels. The proposed scheme exploits the initial conditions to generate different chaotic sequences to convey extra bits per transmission. In comparison to rival modulation schemes, the results obtained in the proposed work show a promising data rate boost and a competitive performance. The last article employs a non-coherent differential chaotic shift-key system named Permutation Index DCSK Modulation Technique for Secure Multi-User High-Data-Rate Communication Systems that is found in the Appendix. In this original design, where each data frame is divided into two time slots in which the reference chaotic signal is sent in the first time slot and a permuted replica of the reference signal multiplied by the modulating bit is sent in the second time slot, we target enhancing data security, energy and spectral efficiencies. Overall, in light of the high demands for bandwidth and energy efficiencies of futuristic systems, the suggested soft indexing mechanisms are successful candidates with promising results
    corecore