178 research outputs found

    An Algorithm for Global Maximization of Secrecy Rates in Gaussian MIMO Wiretap Channels

    Full text link
    Optimal signaling for secrecy rate maximization in Gaussian MIMO wiretap channels is considered. While this channel has attracted a significant attention recently and a number of results have been obtained, including the proof of the optimality of Gaussian signalling, an optimal transmit covariance matrix is known for some special cases only and the general case remains an open problem. An iterative custom-made algorithm to find a globally-optimal transmit covariance matrix in the general case is developed in this paper, with guaranteed convergence to a \textit{global} optimum. While the original optimization problem is not convex and hence difficult to solve, its minimax reformulation can be solved via the convex optimization tools, which is exploited here. The proposed algorithm is based on the barrier method extended to deal with a minimax problem at hand. Its convergence to a global optimum is proved for the general case (degraded or not) and a bound for the optimality gap is given for each step of the barrier method. The performance of the algorithm is demonstrated via numerical examples. In particular, 20 to 40 Newton steps are already sufficient to solve the sufficient optimality conditions with very high precision (up to the machine precision level), even for large systems. Even fewer steps are required if the secrecy capacity is the only quantity of interest. The algorithm can be significantly simplified for the degraded channel case and can also be adopted to include the per-antenna power constraints (instead or in addition to the total power constraint). It also solves the dual problem of minimizing the total power subject to the secrecy rate constraint.Comment: accepted by IEEE Transactions on Communication

    Transmit design for MIMO wiretap channel with a malicious jammer

    Full text link
    In this paper, we consider the transmit design for multi-input multi-output (MIMO) wiretap channel including a malicious jammer. We first transform the system model into the traditional three-node wiretap channel by whitening the interference at the legitimate user. Additionally, the eavesdropper channel state information (ECSI) may be fully or statistically known, even unknown to the transmitter. Hence, some strategies are proposed in terms of different levels of ECSI available to the transmitter in our paper. For the case of unknown ECSI, a target rate for the legitimate user is first specified. And then an inverse water-filling algorithm is put forward to find the optimal power allocation for each information symbol, with a stepwise search being used to adjust the spatial dimension allocated to artificial noise (AN) such that the target rate is achievable. As for the case of statistical ECSI, several simulated channels are randomly generated according to the distribution of ECSI. We show that the ergodic secrecy capacity can be approximated as the average secrecy capacity of these simulated channels. Through maximizing this average secrecy capacity, we can obtain a feasible power and spatial dimension allocation scheme by using one dimension search. Finally, numerical results reveal the effectiveness and computational efficiency of our algorithms.Comment: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring

    On the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods

    Full text link
    This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity

    On the Interference Alignment Designs for Secure Multiuser MIMO Systems

    Full text link
    In this paper, we propose two secure multiuser multiple-input multiple-output transmission approaches based on interference alignment (IA) in the presence of an eavesdropper. To deal with the information leakage to the eavesdropper as well as the interference signals from undesired transmitters (Txs) at desired receivers (Rxs), our approaches aim to design the transmit precoding and receive subspace matrices to minimize both the total inter-main-link interference and the wiretapped signals (WSs). The first proposed IA scheme focuses on aligning the WSs into proper subspaces while the second one imposes a new structure on the precoding matrices to force the WSs to zero. When the channel state information is perfectly known at all Txs, in each proposed IA scheme, the precoding matrices at Txs and the receive subspaces at Rxs or the eavesdropper are alternatively selected to minimize the cost function of an convex optimization problem for every iteration. We provide the feasible conditions and the proofs of convergence for both IA approaches. The simulation results indicate that our two IA approaches outperform the conventional IA algorithm in terms of average secrecy sum rate.Comment: Updated version, updated author list, accepted to be appear in IEICE Transaction

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure
    corecore