9 research outputs found

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Circuit Design Techniques For Wideband Phased Arrays

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xii, 143 pages.This dissertation focuses on beam steering in wideband phased arrays and phase noise modeling in injection locked oscillators. Two different solutions, one in frequency and one in time, have been proposed to minimize beam squinting in phased arrays. Additionally, a differential current reuse frequency doubler for area and power savings has been proposed. Silicon measurement results are provided for the frequency domain solution (IBM 65nm RF CMOS), injection locked oscillator model verification (IBM 130nm RF-CMOS) and frequency doubler (IBM 65nm RF CMOS), while post extraction simulation results are provided for the time domain phased array solution (the chip is currently under fabrication, TSMC 65nm RF CMOS). In the frequency domain solution, a 4-point passive analog FFT based frequency tunable filter is used to channelize an incoming wideband signal into multiple narrowband signals, which are then processed through independent phase shifters. A two channel prototype has been developed at 8GHz RF frequency. Three discrete phase shifts (0 & +/- 90 degrees) are implemented through differential I-Q swapping with appropriate polarity. A minimum null-depth of 19dB while a maximum null-depth of 27dB is measured. In the time domain solution, a discrete time approach is undertaken with signals getting sampled in order of their arrival times. A two-channel prototype for a 2GHz instantaneous RF bandwidth (7GHz-9GHz) has been designed. A QVCO generates quadrature LO signals at 8GHz which are phase shifted through a 5-bit (2 extra bits from differential I-Q swapping with appropriate polarity) cartesian combiner. Baseband sampling clocks are generated from phase shifted LOs through a CMOS divide by 4 with independent resets. The design achieves an average time delay of 4.53ps with 31.5mW of power consumption (per channel, buffers excluded). An injection locked oscillator has been analyzed in s-domain using Paciorek's time domain transient equations. The simplified analysis leads to a phase noise model identical to that of a type-I PLL. The model is equally applicable to injection locked dividers and multipliers and has been extended to cover all injection locking scenarios. The model has been verified against a discrete 57MHz Colpitt's ILO, a 6.5GHz ILFD and a 24GHz ILFM with excellent matching between the model and measurements. Additionally, a differential current reuse frequency doubler, for frequency outputs between 7GHz to 14GHz, design has been developed to reduce passive area and dc power dissipation. A 3-bit capacitive tuning along with a tail current source is used to better conversion efficiency. The doubler shows FOMT_{T} values between 191dBc/Hz to 209dBc/Hz when driven by a 0.7GHz to 5.8GHz wide tuning VCO with a phase noise that ranges from -114dBc/Hz to -112dBc/Hz over the same bandwidth

    Physical layer network coding based communication systems in frequency selective channels

    Get PDF
    PhD ThesisThe demand for wireless communications is growing every day which requiresmore speed and bandwidth. In two way relay networks (TWRN), physical layer network coding (PLNC) was proposed to double the bandwidth. A TWRN is a system where two end users exchange data through a middle node called the relay. The two signals are allowed to be physically added before being broadcasted back to the end users. This system can work smoothly in flat fading channels, but can not be applied straightforward in frequency selective channels. In a multipath multi-tap FIR channel, the inter-symbol interference (ISI) spreads through several symbols. In this case, the symbols at the relay are not just an addition of the sent symbols but also some of the previous symbols from both sides. This not only causes a traditional PLNC to fail but also a simple one equalizer system will not solve the problem. Three main methods have been proposed by other researchers. The OFDM based PLNC is the simplest in terms of implementation and complexity but suffers from the disadvantages of the OFDMlike cyclic prefix overhead and frequency offset. The main disadvantage, however is the relatively low BER performance because it is restricted to linear equalizers in the PLNC system. Another approach is pre-filtering or pre-equalization. This method also has some disadvantages like complexity, sensitivity to channel variation and the need of a feedback channel for both end nodes. Finally, the maximum likelihood sequence detector was also proposed but is restricted to BPSK modulation and exponentially rising complexity are major drawbacks. The philosophy in this work is to avoid these disadvantages by using a time domain based system. The DFE is the equalizer of choice here because it provides a non-trivial BER performance improvement with very little increase in complexity. In this thesis, the problem of frequency selective channels in PLNC systems can be solved by properly adjusting the design of the system including the DFE. The other option is to redesign the equalizer to meet that goal. An AF DFE system is proposed in this work that provides very low complexity especially at the relay with little sensitivity to channel changes. A multi-antenna DNF DFE system is also proposed here with an improved performance. Finally, a new equalizer is designed for very low complexity and cost DNF approach with little sacrifice of BER performance. Matlab was used for the simulations with Monte Carlo method to verify the findings of this work through finding the BER performance of each system. This thesis opens the door for future improvement on the PLNC system. More research needs to be done like testing the proposed systems in real practical implementation and also the effect of adding channel coding to these systems.Iraqi Government, Ministry of Higher Educatio

    Enhanced Air-Interfaces for Fifth Generation Mobile Broadband Communication

    Get PDF
    In broadband wireless multicarrier communication systems, intersymbol interference (ISI) and intercarrier interference (ICI) should be reduced. In orthogonal frequency division multiplexing (OFDM), the cyclic prefix (CP) guarantees to reduce the ISI interference. However, the CP reduces spectral and power efficiency. In this thesis, iterative interference cancellation (IIC) with iterative decoding is used to reduce ISI and ICI from the received signal in multicarrier modulation (MCM) systems. Alternative schemes as well as OFDM with insufficient CP are considered; filter bank multicarrier (FBMC/Offset QAM) and discrete wavelet transform based multicarrier modulation (DWT-MCM). IIC is applied in these different schemes. The required components are calculated from either the hard decision of the demapper output or the estimated decoded signal. These components are used to improve the received signal. Channel estimation and data detection are very important parts of the receiver design of the wireless communication systems. Iterative channel estimation using Wiener filter channel estimation with known pilots and IIC is used to estimate and improve data detection. Scattered and interference approximation method (IAM) preamble pilot are using to calculate the estimated values of the channel coefficients. The estimated soft decoded symbols with pilot are used to reduce the ICI and ISI and improve the channel estimation. The combination of Multi-Input Multi-Output MIMO and OFDM enhances the air-interface for the wireless communication system. In a MIMO-MCM scheme, IIC and MIMO-IIC-based successive interference cancellation (SIC) are proposed to reduce the ICI/ISI and cross interference to a given antenna from the signal transmitted from the target and the other antenna respectively. The number of iterations required can be calculated by analysing the convergence of the IIC with the help of EXtrinsic Information Transfer (EXIT) charts. A new EXIT approach is proposed to provide a means to define performance for a given outage probability on quasi-static channels

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    A Mobile Wireless Channel State Recognition Algorihm: Introduction, Definition, and Verification - Sensing for Cognitive Environmental Awareness

    Get PDF
    This research includes mobile wireless systems limited by time and frequency dispersive channels. A blind mobile wireless channel (MWC) state recognition (CSR) algorithm that detects hidden coherent nonselective and noncoherent selective processes is verified. Because the algorithm is blind, it releases capacity based on current channel state that traditionally is fixed and reserved for channel gain estimation and distortion mitigation. The CSR algorithm enables cognitive communication system control including signal processing, resource allocation/deallocation, or distortion mitigation selections based on channel coherence states. MWC coherent and noncoherent states, ergodicity, stationarity, uncorrelated scattering, and Markov processes are assumed for each time block. Furthermore, a hidden Markov model (HMM) is utilized to represent the statistical relationships between hidden dispersive processes and observed receive waveform processes. First-order and second-order statistical extracted features support state hard decisions which are combined in order to increase the accuracy of channel state estimates. This research effort has architected, designed, and verified a blind statistical feature recognition algorithm capable of detecting coherent nonselective, single time selective, single frequency selective, or dual selective noncoherent states. A MWC coherence state model (CSM) was designed to represent these hidden dispersive processes. Extracted statistical features are input into a parallel set of trained HMMs that compute state sequence conditional likelihoods. Hard state decisions are combined to produce a single most likely channel state estimate for each time block. To verify the CSR algorithm performance, combinations of hidden state sequences are applied to the CSR algorithm and verified against input hidden state sequences. State sequence recognition accuracy sensitivity was found to be above 99% while specificity was determined to be above 98% averaged across all features, states, and sequences. While these results establish the feasibility of a MWC blind CSR algorithm, optimal configuration requires future research to further improve performance including: 1) characterizing the range of input signal configurations, 2) waveform feature block size reduction, 3) HMM parameter tracking, 4) HMM computational complexity and latency reduction, 5) feature soft decision combining, 6) recursive implementation, 7) interfacing with state based mobile wireless communication control processes, and 8) extension to wired or wireless waveform recognition
    corecore