278 research outputs found

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe

    MIMO-OFDM Optimal Decoding and Achievable Information Rates Under Imperfect Channel Estimation

    Full text link
    Optimal decoding of bit interleaved coded modulation (BICM) MIMO-OFDM where an imperfect channel estimate is available at the receiver is investigated. First, by using a Bayesian approach involving the channel a posteriori density, we derive a practical decoding metric for general memoryless channels that is robust to the presence of channel estimation errors. Then, we evaluate the outage rates achieved by a decoder that uses our proposed metric. The performance of the proposed decoder is compared to the classical mismatched decoder and a theoretical decoder defined as the best decoder in the presence of imperfect channel estimation. Numerical results over Rayleigh block fading MIMO-OFDM channels show that the proposed decoder outperforms mismatched decoding in terms of bit error rate and outage capacity without introducing any additional complexity

    Difference Antenna Selection and Power Allocation for Wireless Cognitive Systems

    Full text link
    In this paper, we propose an antenna selection method in a wireless cognitive radio (CR) system, namely difference selection, whereby a single transmit antenna is selected at the secondary transmitter out of MM possible antennas such that the weighted difference between the channel gains of the data link and the interference link is maximized. We analyze mutual information and outage probability of the secondary transmission in a CR system with difference antenna selection, and propose a method of optimizing these performance metrics of the secondary data link subject to practical constraints on the peak secondary transmit power and the average interference power as seen by the primary receiver. The optimization is performed over two parameters: the peak secondary transmit power and the difference selection weight δ∈[0,1]\delta\in [0, 1]. We show that, difference selection using the optimized parameters determined by the proposed method can be, in many cases of interest, superior to a so called ratio selection method disclosed in the literature, although ratio selection has been shown to be optimal, when impractically, the secondary transmission power constraint is not applied. We address the effects that the constraints have on mutual information and outage probability, and discuss the practical implications of the results.Comment: 29 pages, 9 figures, to be submitted to IEEE Transactions on Communication

    Resource Allocation for Delay Differentiated Traffic in Multiuser OFDM Systems

    Full text link
    Most existing work on adaptive allocation of subcarriers and power in multiuser orthogonal frequency division multiplexing (OFDM) systems has focused on homogeneous traffic consisting solely of either delay-constrained data (guaranteed service) or non-delay-constrained data (best-effort service). In this paper, we investigate the resource allocation problem in a heterogeneous multiuser OFDM system with both delay-constrained (DC) and non-delay-constrained (NDC) traffic. The objective is to maximize the sum-rate of all the users with NDC traffic while maintaining guaranteed rates for the users with DC traffic under a total transmit power constraint. Through our analysis we show that the optimal power allocation over subcarriers follows a multi-level water-filling principle; moreover, the valid candidates competing for each subcarrier include only one NDC user but all DC users. By converting this combinatorial problem with exponential complexity into a convex problem or showing that it can be solved in the dual domain, efficient iterative algorithms are proposed to find the optimal solutions. To further reduce the computational cost, a low-complexity suboptimal algorithm is also developed. Numerical studies are conducted to evaluate the performance the proposed algorithms in terms of service outage probability, achievable transmission rate pairs for DC and NDC traffic, and multiuser diversity.Comment: 29 pages, 8 figures, submitted to IEEE Transactions on Wireless Communication
    • …
    corecore