296 research outputs found

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    A Multi-Agent Deep Reinforcement Learning based Spectrum Allocation Framework for D2D Communications

    Full text link
    Device-to-device (D2D) communication has been recognized as a promising technique to improve spectrum efficiency. However, D2D transmission as an underlay causes severe interference, which imposes a technical challenge to spectrum allocation. Existing centralized schemes require global information, which can cause serious signaling overhead. While existing distributed solution requires frequent information exchange between users and cannot achieve global optimization. In this paper, a distributed spectrum allocation framework based on multi-agent deep reinforcement learning is proposed, named Neighbor-Agent Actor Critic (NAAC). NAAC uses neighbor users' historical information for centralized training but is executed distributedly without that information, which not only has no signal interaction during execution, but also utilizes cooperation between users to further optimize system performance. The simulation results show that the proposed framework can effectively reduce the outage probability of cellular links, improve the sum rate of D2D links and have good convergence.Comment: Accepted to Globecom 201

    Multi-Agent Deep Reinforcement Learning based Spectrum Allocation for D2D Underlay Communications

    Full text link
    Device-to-device (D2D) communication underlay cellular networks is a promising technique to improve spectrum efficiency. In this situation, D2D transmission may cause severe interference to both the cellular and other D2D links, which imposes a great technical challenge to spectrum allocation. Existing centralized schemes require global information, which causes a large signaling overhead. While existing distributed schemes requires frequent information exchange among D2D users and cannot achieve global optimization. In this paper, a distributed spectrum allocation framework based on multi-agent deep reinforcement learning is proposed, named multi-agent actor critic (MAAC). MAAC shares global historical states, actions and policies during centralized training, requires no signal interaction during execution and utilizes cooperation among users to further optimize system performance. Moreover, in order to decrease the computing complexity of the training, we further propose the neighbor-agent actor critic (NAAC) based on the neighbor users' historical information for centralized training. The simulation results show that the proposed MAAC and NAAC can effectively reduce the outage probability of cellular links, greatly improve the sum rate of D2D links and converge quickly.Comment: Accepted to IEEE Transactions on Vehicular Technology. arXiv admin note: text overlap with arXiv:1904.0661

    Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems

    Full text link
    Spectrum management and resource allocation (RA) problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks. The traditional approaches for solving such problems usually consume time and memory, especially for large size problems. Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems, especially the generative model of the deep neural networks. In this work, we propose a resource allocation deep autoencoder network, as one of the promising generative models, for enabling spectrum sharing in underlay device-to-device (D2D) communication by solving linear sum assignment problems (LSAPs). Specifically, we investigate the performance of three different architectures for the conditional variational autoencoders (CVAE). The three proposed architecture are the convolutional neural network (CVAE-CNN) autoencoder, the feed-forward neural network (CVAE-FNN) autoencoder, and the hybrid (H-CVAE) autoencoder. The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques, such as the Hungarian algorithm, due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time. Moreover, the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques

    Deep Learning-based Resource Allocation For Device-to-Device Communication

    Full text link
    In this paper, a deep learning (DL) framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication is proposed. Thereby, the channel assignment and discrete transmit power levels of the D2D users, which are both integer variables, are optimized to maximize the overall spectral efficiency whilst maintaining the quality-of-service (QoS) of the cellular users. Depending on the availability of channel state information (CSI), two different configurations are considered, namely 1) centralized operation with full CSI and 2) distributed operation with partial CSI, where in the latter case, the CSI is encoded according to the capacity of the feedback channel. Instead of solving the resulting resource allocation problem for each channel realization, a DL framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models. Furthermore, we propose a new training strategy that combines supervised and unsupervised learning methods and a local CSI sharing strategy to achieve near-optimal performance while enforcing the QoS constraints of the cellular users and efficiently handling the integer optimization variables based on a few ground-truth labels. Our simulation results confirm that near-optimal performance can be attained with low computation time, which underlines the real-time capability of the proposed scheme. Moreover, our results show that not only the resource allocation strategy but also the CSI encoding strategy can be efficiently determined using a DNN. Furthermore, we show that the proposed DL framework can be easily extended to communications systems with different design objectives

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Reconfigurable Intelligent Surface Aided Cellular Networks With Device-to-Device Users

    Get PDF

    Learning to Branch: Accelerating Resource Allocation in Wireless Networks

    Full text link
    Resource allocation in wireless networks, such as device-to-device (D2D) communications, is usually formulated as mixed integer nonlinear programming (MINLP) problems, which are generally NP-hard and difficult to get the optimal solutions. Traditional methods to solve these MINLP problems are all based on mathematical optimization techniques, such as the branch-and-bound (B&B) algorithm that converges slowly and has forbidding complexity for real-time implementation. Therefore, machine leaning (ML) has been used recently to address the MINLP problems in wireless communications. In this paper, we use imitation learning method to accelerate the B&B algorithm. With invariant problem-independent features and appropriate problem-dependent feature selection for D2D communications, a good auxiliary prune policy can be learned in a supervised manner to speed up the most time-consuming branch process of the B&B algorithm. Moreover, we develop a mixed training strategy to further reinforce the generalization ability and a deep neural network (DNN) with a novel loss function to achieve better dynamic control over optimality and computational complexity. Extensive simulation demonstrates that the proposed method can achieve good optimality and reduce computational complexity simultaneously.Comment: to appear in IEEE Transactions on Vehicular Technolog
    • …
    corecore