745 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Frequency-domain transmit processing for MIMO SC-FDMA in wideband propagation channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Spatial Characteristics of Distortion Radiated from Antenna Arrays with Transceiver Nonlinearities

    Full text link
    The distortion from massive MIMO (multiple-input--multiple-output) base stations with nonlinear amplifiers is studied and its radiation pattern is derived. The distortion is analyzed both in-band and out-of-band. By using an orthogonal Hermite representation of the amplified signal, the spatial cross-correlation matrix of the nonlinear distortion is obtained. It shows that, if the input signal to the amplifiers has a dominant beam, the distortion is beamformed in the same way as that beam. When there are multiple beams without any one being dominant, it is shown that the distortion is practically isotropic. The derived theory is useful to predict how the nonlinear distortion will behave, to analyze the out-of-band radiation, to do reciprocity calibration, and to schedule users in the frequency plane to minimize the effect of in-band distortion

    Waveforms for the Massive MIMO Downlink: Amplifier Efficiency, Distortion and Performance

    Full text link
    In massive MIMO, most precoders result in downlink signals that suffer from high PAR, independently of modulation order and whether single-carrier or OFDM transmission is used. The high PAR lowers the power efficiency of the base station amplifiers. To increase power efficiency, low-PAR precoders have been proposed. In this article, we compare different transmission schemes for massive MIMO in terms of the power consumed by the amplifiers. It is found that (i) OFDM and single-carrier transmission have the same performance over a hardened massive MIMO channel and (ii) when the higher amplifier power efficiency of low-PAR precoding is taken into account, conventional and low-PAR precoders lead to approximately the same power consumption. Since downlink signals with low PAR allow for simpler and cheaper hardware, than signals with high PAR, therefore, the results suggest that low-PAR precoding with either single-carrier or OFDM transmission should be used in a massive MIMO base station
    • 

    corecore