113 research outputs found

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Interference mitigation in D2D communication underlaying LTE-A network

    Get PDF
    The mobile data traffic has risen exponentially in recent days due to the emergence of data intensive applications, such as online gaming and video sharing. It is driving the telecommunication industry as well as the research community to come up with new paradigms that will support such high data rate requirements within the existing wireless access network, in an efficient and effective manner. To respond to this challenge, device-to-device (D2D) communication in cellular networks is viewed as a promising solution, which is expected to operate, either within the coverage area of the existing eNB and under the same cellular spectrum (in-band) or separate spectrum (out-band). D2D provides the opportunity for users located in close proximity of each other to communicate directly, without traversing data traffic through the eNB. It results in several transmission gains, such as improved throughput, energy gain, hop gain, and reuse gain. However, integration of D2D communication in cellular systems at the same time introduces new technical challenges that need to be addressed. Containment of the interference among D2D nodes and cellular users is one of the major problems. D2D transmission radiates in all directions, generating undesirable interference to primary cellular users and other D2D users sharing the same radio resources resulting in severe performance degradation. Efficient interference mitigation schemes are a principal requirement in order to optimize the system performance. This paper presents a comprehensive review of the existing interference mitigation schemes present in the open literature. Based on the subjective and objective analysis of the work available to date, it is also envisaged that adopting a multi-antenna beamforming mechanism with power control, such that the transmit power is maximized toward the direction of the intended D2D receiver node and limited in all other directions will minimize the interference in the network. This could maximize the sum throughput and hence, guarantees the reliability of both the D2D and cellular connections

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Modeling network-controlled device-to-device communications in SimuLTE

    Get PDF
    In Long Term Evolution-Advanced (LTE-A), network-controlled device-to-device (D2D) communications allow User Equipments (UEs) to communicate directly, without involving the Evolved Node-B in data relaying, while the latter still retains control of resource allocation. The above paradigm allows reduced latencies for the UEs and increased resource efficiency for the network operator, and is therefore foreseen to support several services, from Machine-to-machine to vehicular communications. D2D communications introduce research challenges that might affect the performance of applications and upper-layer protocols, hence simulations represent a valuable tool for evaluating these aspects. However, simulating D2D features might pose additional com-putational burden to the simulation environment. To this aim, a careful modeling is required in order to reduce computational overhead. In this paper we describe our modeling of net-work-controlled D2D communications in SimuLTE, a system-level LTE-A simulation library based on OMNeT++. We describe the core modeling choices of SimuLTE, and show how these allow an easy extension to D2D communications. Moreover, we describe in detail the modeling of specific problems arising with D2D communications, such as scheduling with frequency reuse, connection mode switching and broadcast transmission. We document the computational efficiency of our modeling choices, showing that simulation of D2D communications is not more complex than simulation of classical cellular communications of comparable scale. Results show that the heaviest computational burden of D2D communication lies in estimating the Sidelink channel quality. We show that SimuLTE allows one to evaluate the interplay between D2D communication and end-to-end performance of UDP- and TCP-based services. Moreover, we assess the accuracy of using a binary interference model for frequency reuse, and we evaluate the trade-off between speed of execution and accuracy in modeling the reception probability

    Analytical characterization of inband and outband D2D Communications for network access

    Get PDF
    Mención Internacional en el título de doctorCooperative short-range communication schemes provide powerful tools to solve interference and resource shortage problems in wireless access networks. With such schemes, a mobile node with excellent cellular connectivity can momentarily accept to relay traffic for its neighbors experiencing poor radio conditions and use Device-to-Device (D2D) communications to accomplish the task. This thesis provides a novel and comprehensive analytical framework that allows evaluating the effects of D2D communications in access networks in terms of spectrum and energy efficiency. The analysis covers the cases in which D2D communications use the same bandwidth of legacy cellular users (in-band D2D) or a different one (out-band D2D) and leverages on the characterization of underlying queueing systems and protocols to capture the complex intertwining of short-range and legacy WiFi and cellular communications. The analysis also unveils how D2D affects the use and scope of other optimization techniques used for, e.g., interference coordination and fairness in resource distribution. Indeed, characterizing the performance of D2D-enabled wireless access networks plays an essential role in the optimization of system operation and, as a consequence, permits to assess the general applicability of D2D solutions. With such characterization, we were able to design several mechanisms that improve system capabilities. Specifically, we propose bandwidth resource management techniques for controlling interference when cellular users and D2D pairs share the same spectrum, we design advanced and energy-aware access selection mechanisms, we show how to adopt D2D communications in conjunction with interference coordination schemes to achieve high and fair throughputs, and we discuss on end-to-end fairness—beyond the use of access network resources—when D2D communications is adopted in C-RAN. The results reported in this thesis show that identifying performance bottlenecks is key to properly control network operation, and, interestingly, bottlenecks may not be represented just by wireless resources when end-to-end fairness is of concern.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Ajmone Marsan.- Secretario: Miquel Payaró Llisterri.- Vocal: Omer Gurewit
    • …
    corecore