79,005 research outputs found

    Power saving mechanism with less number of nodes in the routing path in Adhoc Wireless Networks using MARI Algorithm

    Get PDF
    Adhoc wireless networks have emerged as one of the key growth areas for wireless3 networking and computing technology. Adhoc networks are a new wireless networking paradigm for mobile hosts. Unlike traditional mobile wireless networks, adhoc networks do not rely on any fixed infrastructure. Instead, hosts rely on each other to keep the network connected. The nodes in ad-hoc networks are battery operated and have limited energy resources, which is indeed a key limitations. Each node consumes a large amount of energy while transmission or reception of packets, among the nodes. While the nodes depend on each other for efficient transferring of packets, it is a key issue in adhoc networks to have efficient methods for forwarding of packets between any given pair of nodes, with minimum power consumption and less number of intermediate nodes . In this study we propose an optimal routing protocol called MARI (Mobile Agent with Routing Intelligence). The MARI Topology proposed for power management is novel and is used for the consumption of minimum power in an adhoc wireless network, at each node. The Protocol groups the network into distinct networks with the selection of MARI nodes and Gateways for efficient packet transmission between any member node pair. The operational cycle at each node is classified into four distinct operations, i.e., transmitting, receiving, idle and sleep cycle, in order to achieve efficient power management in an Adhoc wireless network

    Network parameters impact on dynamic transmission power control in vehicular ad hoc networks

    Get PDF
    International audienceIn vehicular ad hoc networks, the dynamic change in transmission power is very effective to increase the throughput of the wireless vehicular network and decrease the delay of the message communication between vehicular nodes on the highway. Whenever an event occurs on the highway, the reliability of the communication in the vehicular network becomes so vital so that event created messages should reach to all the moving network nodes. It becomes necessary that there should be no interference from outside of the network and all the neighbor nodes should lie in the transmission range of the reference vehicular node. Transmission range is directly proportional to the transmission power the moving node. If the transmission power will be high, the interference increases that can cause higher delay in message reception at receiver end, hence the performance of the network decreased. In this paper, it is analyzed that how transmission power can be controlled by considering other different parameter of the network such as; density, distance between moving nodes, different types of messages dissemination with their priority, selection of an antenna also affects the transmission power. The dynamic control of transmission power in VANET serves also for the optimization of the resources where it needs, can be decreased and increased depending on the circumstances of the network. Different applications and events of different types also cause changes in transmission power to enhance the reachability. The analysis in this paper is comprised of density, distance with single hop and multi hop message broadcasting based dynamic transmission power control as well as antenna selection and applications based. Some summarized tables are produced according to the respective parameters of the vehicular network. At the end some valuable observations are made and discussed in detail

    Cooperative communications in wireless networks.

    Get PDF
    Zhang Jun.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 82-92).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Multipath Fading Channels --- p.1Chapter 1.2 --- Diversity --- p.3Chapter 1.3 --- Outline of the Thesis --- p.6Chapter 2 --- Background and Related Work --- p.8Chapter 2.1 --- Cooperative Diversity --- p.8Chapter 2.1.1 --- User Cooperation --- p.9Chapter 2.1.2 --- Cooperative Diversity --- p.10Chapter 2.1.3 --- Coded Cooperation --- p.12Chapter 2.2 --- Information-Theoretic Studies --- p.13Chapter 2.3 --- Multihop Cellular Networks --- p.15Chapter 2.3.1 --- MCN: Multihop Cellular Network --- p.15Chapter 2.3.2 --- iCAR: Integrated Cellular and Ad Hoc Relaying Systems --- p.17Chapter 2.3.3 --- UCAN: Unified Cellular and Ad Hoc Network Architecture --- p.17Chapter 2.4 --- Wireless Ad Hoc Networks --- p.18Chapter 2.5 --- Space-Time Processing --- p.20Chapter 3 --- Single-Source Multiple-Relay Cooperation System --- p.23Chapter 3.1 --- System Model --- p.23Chapter 3.2 --- Fixed Decode-and-Forward Cooperation System --- p.26Chapter 3.2.1 --- BER for system with errors at the relay --- p.28Chapter 3.2.2 --- General BER formula for single-source nr-relay cooperation system --- p.30Chapter 3.2.3 --- Discussion of Interuser Channels --- p.31Chapter 3.3 --- Relay Selection Protocol --- p.33Chapter 3.3.1 --- Transmission Protocol --- p.34Chapter 3.3.2 --- BER Analysis for Relay Selection Protocol --- p.34Chapter 4 --- Multiple-Source Multiple-Relay Cooperation System --- p.40Chapter 4.1 --- Transmission Protocol --- p.41Chapter 4.2 --- Fixed Cooperative Coding System --- p.43Chapter 4.2.1 --- Performance Analysis --- p.43Chapter 4.2.2 --- Numerical Results and Discussion --- p.48Chapter 4.3 --- Adaptive Cooperative Coding --- p.49Chapter 4.3.1 --- Performance Analysis of Adaptive Cooperative Coding System --- p.50Chapter 4.3.2 --- Analysis of p2(2) --- p.52Chapter 4.3.3 --- Numerical Results and Discussion --- p.53Chapter 5 --- Cooperative Multihop Transmission --- p.56Chapter 5.1 --- System Model --- p.57Chapter 5.1.1 --- Conventional Multihop Transmission --- p.58Chapter 5.1.2 --- Cooperative Multihop Transmission --- p.59Chapter 5.2 --- Performance Evaluation --- p.59Chapter 5.2.1 --- Conventional Multihop Transmission --- p.60Chapter 5.2.2 --- Cooperative Multihop Transmission --- p.60Chapter 5.2.3 --- Numerical Results --- p.64Chapter 5.3 --- Discussion --- p.64Chapter 5.3.1 --- Cooperative Range --- p.64Chapter 5.3.2 --- Relay Node Distribution --- p.67Chapter 5.3.3 --- Power Allocation and Distance Distribution (2-hop Case) --- p.68Chapter 5.4 --- Cooperation in General Wireless Ad Hoc Networks --- p.70Chapter 5.4.1 --- Cooperation Using Linear Network Codes --- p.71Chapter 5.4.2 --- Single-Source Single-Destination Systems --- p.74Chapter 5.4.3 --- Multiple-Source Single-Destination Systems --- p.75Chapter 6 --- Conclusion --- p.80Bibliography --- p.82Chapter A --- Proof of Proposition 1-4 --- p.93Chapter A.1 --- Proof of Proposition 1 --- p.93Chapter A.2 --- Proof of Proposition 2 --- p.95Chapter A.3 --- Proof of Proposition 3 --- p.95Chapter A.4 --- Proof of Proposition 4 --- p.9
    • …
    corecore