587 research outputs found

    Transmission of Tactile Roughness through Master-slave Systems

    Get PDF
    Abstract-In this study, a tactile-roughness transmission system applicable to master-slave systems with a communication time delay is developed. The master-side system constructs a local model of target objects placed in the slave-side environment. Tactile feedbacks presented to an operator at the master side are produced by combining the physical properties of target objects in the local model and the kinetic information of the operator. The time delay between the operator's motion and the tactile feedback is cancelled because the stimuli are synchronized with the exploratory motions. The proposed system is applied to the transmission of tactileroughness. The tactile stimuli presented to the operator are vibratory stimuli whose amplitude and frequency are controlled. These stimuli are locally synthesized by combining the surface wavelength of target objects and the operator's hand velocity. Using the developed tactile-roughness transmission system, an experiment for transmitting the perceived roughness of grating scales was conducted. As a result, the roughness perceived by the operators was found to highly correlate with the roughness of the scales in the slave-side environment with a coefficient of 0.83

    Towards transparent telepresence

    Get PDF
    It is proposed that the concept of transparent telepresence can be closely approached through high fidelity technological mediation. It is argued that the matching of the system capabilities to those of the human user will yield a strong sense of immersion and presence at a remote site. Some applications of such a system are noted. The concept is explained and critical system elements are described together with an overview of some of the necessary system specifications

    Haptic Data Transmission Based on the Prediction and Compression

    Get PDF

    Haptics: state of the art survey

    Get PDF
    This paper presents a novel approach to the understanding of Haptic and its related fields where haptics is used extensively like in display systems, communication, different types of haptic devices, and interconnection of haptic displays where virtual environment should feel like equivalent physical systems. There have been escalating research interests on areas relating to haptic modality in recent years, towards multiple fields. However, there seems to be limited studies in determining the various subfields and interfacing and related information on haptic user interfaces and its influence on the fields mentioned. This paper aims to bring forth the theory behind the essence of Haptics and its Subfields like haptic interfaces and its applications

    Integration of the hybrid-structure haptic interface: HIPHAD v1.0

    Get PDF
    Design, manufacturing, integration and initial test results of the 6-DoF haptic interface, HIPHAD v1.0, are presented in this paper. The hybrid haptic robot mechanism is composed of a 3-DoF parallel platform manipulator, R-Cube, for translational motions and a 3-DoF serial wrist mechanism for monitoring the rotational motions of the handle. The device is capable of displaying point-type of contact since only the R-Cube mechanism is actuated. The dimensions and the orientation of the R-Cube mechanism are reconfigured to comply with the requirements of the haptic system design criteria. The system has several advantages such as relatively trivial kinematical analysis, compactness and high stiffness. The integration of the system along with its mechanism, data acquisition card (DAQ), motor drivers, motors, position sensors, and computer control interface are outlined.Marie Curie International Reintegration Grant within the 7th European Community Framework Programm

    Development of a Tactile Thimble for Augmented and Virtual Reality Applications

    Get PDF
    The technologies that have gained a renewed interest during the recent years are Virtual Reality (VR) and Augmented Reality (AR), as they become more accessible and affordable for mass-production. The input device which allows us to interact with the virtual environment is a very crucial aspect. One of the main barriers to immerse ourselves in virtual reality is the lack of realistic feedback. The user has to almost rely entirely on visual feedback without any haptic feedback, and this increases the user's workload and decreases the performance. In this thesis, a functional demonstrator of a tactile feedback device which conveys compelling interactions with not just VR, but also AR is presented. The device is designed such that there is realistic feedback for virtual touches and least obstruction during contact of a real object in AR applications. New design principle of introducing small actuators allows the device to be compact and increases its portability. In contrast to actuators that are placed on the finger pad in most of the available input devices for VR, a tactile device with two actuators that are arranged laterally on the finger, so that the underside of the fingertip is free is proposed. The output from these actuators generate a tactile stimulus by stimulating a sense of touch, which helps the user to manipulate virtual objects. The actuators are designed to independently generate vibrations and this coupled tactile feedback enhances the stimulation resulting in a wide variety of stimulation patterns for the sense of touch. Preliminary experimental evaluation for design and location of actuators has been carried out to measure the vibration intensity. In addition, user experiments for design evaluation of the two actuators based on different vibration patterns have also been conducted

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Representing Interpersonal Touch Directions by Tactile Apparent Motion Using Smart Bracelets

    Get PDF
    We present a novel haptic interaction to vibro-tactually connect an interpersonal touch using bracelet devices. A pair of bracelet devices identifies the user who is actively touching and the other who is passively touched, defining the direction as being from the former to the latter. By controlling the vibrational feedback, the pair induces a tactile apparent motion representing the direction between two hands. The bracelets are comprised of our developed interpersonal body area network module, an acceleration sensor, and a vibrator. The devices communicate with each other through electrical current flowing along the hands to identify the direction by sharing accelerations just before a touch and to synchronize the feedback in less than ten milliseconds. Experiment 1 demonstrates that the vibration propagated from a bracelet device to the wearer\u27s hand is perceivable by another. Experiment 2 determines sets of optimal actuation parameters, stimulus onset asynchrony, and duration of vibration to induce the tactile apparent motion based on a psychophysical approach. In addition, vibration propagation between hands is observed. Experiment 3 demonstrates the capability of the developed device to present the haptic interaction
    corecore