33,031 research outputs found

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi

    A Data-driven, High-performance and Intelligent CyberInfrastructure to Advance Spatial Sciences

    Get PDF
    abstract: In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of EO data including remote sensing data and other sensor observation data about earthquake, climate, ocean, hydrology, volcano, glacier, etc., are being collected on a daily basis by a wide range of organizations. In addition to the observation data, human-generated data including microblogs, photos, consumption records, evaluations, unstructured webpages and other Volunteered Geographical Information (VGI) are incessantly generated and shared on the Internet. Meanwhile, the emerging cyberinfrastructure rapidly increases our capacity for handling such massive data with regard to data collection and management, data integration and interoperability, data transmission and visualization, high-performance computing, etc. Cyberinfrastructure (CI) consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high-performance networks to improve research productivity and enable breakthroughs that are not otherwise possible. The Geospatial CI (GCI, or CyberGIS), as the synthesis of CI and GIScience has inherent advantages in enabling computationally intensive spatial analysis and modeling (SAM) and collaborative geospatial problem solving and decision making. This dissertation is dedicated to addressing several critical issues and improving the performance of existing methodologies and systems in the field of CyberGIS. My dissertation will include three parts: The first part is focused on developing methodologies to help public researchers find appropriate open geo-spatial datasets from millions of records provided by thousands of organizations scattered around the world efficiently and effectively. Machine learning and semantic search methods will be utilized in this research. The second part develops an interoperable and replicable geoprocessing service by synthesizing the high-performance computing (HPC) environment, the core spatial statistic/analysis algorithms from the widely adopted open source python package – Python Spatial Analysis Library (PySAL), and rich datasets acquired from the first research. The third part is dedicated to studying optimization strategies for feature data transmission and visualization. This study is intended for solving the performance issue in large feature data transmission through the Internet and visualization on the client (browser) side. Taken together, the three parts constitute an endeavor towards the methodological improvement and implementation practice of the data-driven, high-performance and intelligent CI to advance spatial sciences.Dissertation/ThesisDoctoral Dissertation Geography 201

    Geospatial information infrastructures to address spatial needs in health: Collaboration, challenges and opportunities

    Get PDF
    Most health-related issues such as public health outbreaks and epidemiological threats are better understood from a spatial–temporal perspective and, clearly demand related geospatial datasets and services so that decision makers may jointly make informed decisions and coordinate response plans. Although current health applications support a kind of geospatial features, these are still disconnected from the wide range of geospatial services and datasets that geospatial information infrastructures may bring into health. In this paper we are questioning the hypothesis whether geospatial information infrastructures, in terms of standards-based geospatial services, technologies, and data models as operational assets already in place, can be exploited by health applications for which the geospatial dimension is of great importance. This may be certainly addressed by defining better collaboration strategies to uncover and promote geospatial assets to the health community. We discuss the value of collaboration, as well as the opportunities that geographic information infrastructures offer to address geospatial challenges in health applications

    First approaches to the usability of Digital Map Libraries

    Get PDF
    The Internet is a powerful tool providing different online communication options on geographic approaches. In addition to searching, geoportals provide tools to visualize, explore and download information. Cartographic heritage contained in the Digital Map Libraries (DML) stands out as an exceptional case within the generic frame of a Spatial Data Infrastructure (SDI). There are useful and basic similarities between the global reality of an SDI as a distributed geoportal and a DML; conformance to standards, agreements and services. However, some technological and policy considerations must be taken into account apart from the characteristics common to all SDI in any thematic field. On a first approach to these peculiarities, it is necessary to search different ways to present old maps preserving the original information needed by researchers, without reducing visual quality and Web potentiality. As a specific geoportal in cartographic heritage, some usability recommendations should be taken into account when designing navigation browsers in the DML, apart from the application functionalities. Usability will play an important role to succeed in the provider- citizen communication process. Some specific experiences have been carried out in this field so far, trying to include the DML services in a local SDI prototype and introducing a first approach to visualization methodology. Conclusions are presented at the end, in order to carry out an in-depth study in the future

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Developing Data Extraction and Dynamic Data Visualization (Styling) Modules for Web GIS Risk Assessment System (WGRAS)

    Get PDF
    Interactive web-GIS tools play an important role in determining disaster risk assessment which ultimately result in reduction of unexpected damages, cost and saves millions of lives. Disaster management practitioners largely benefited information at their disposal about location where possible incidents are eminent, anticipate the impact and project possible outcomes to help mitigate and organize proper response. It is also important to note that, accurate and timely information is critical for coherent coordination in response to disasters. All the above can be achieved through proper data collection combined with computer assisted modelling, analysis, production and timely dissemination of spatial information. This Master’s thesis aims to extend features of Web GIS for Risk Assessment (WGRAS) project conducted at the Department of Physical Geography and Ecosystem Science at Lund University. The work includes development of tools for geospatial data acquisition and extraction from freely available external open non-commercial sources and dynamic, user-oriented map Visualization allowing user-defined symbolization and coloring resulting flexible visual portrayal of geospatial data in the web environment. In this regard, solutions are driven based upon open source, open data and implementation strictly complies with open web standard protocols and web services. As a result, WGRAS is furnished with easy and user driven raw geo-spatial data extracts for an area of interest from OpenStreetMap (OSM). Thus, data is automatically stored for later use for different spatial modelling and analysis. The second most important contribution of this thesis is the feature developed to solve visualization of geographic information through a map server where maps are generated with a pre-defined style that limits user’s visual needs. Visualization module enables dynamic definition of style (symbolization and coloring) data which assist non-GIS expert to produce instant and meaningful presentation of maps to the end user. Overall, the work in this practical thesis adds value to disaster management and analysis in terms of easy provision of data and enabling clear dissection of disaster prone areas using effective visualization mechanism.Interactive web-GIS tools play an important role in determining disaster risk assessment which ultimately result in reduction of unexpected damages, cost and saves millions of lives. Disaster management practitioners largely benefited information at their disposal about location where possible incidents are eminent, anticipate the impact and project possible outcomes to help mitigate and organized response. It is also important to note that, accurate and timely information is critical for coherent coordination in response to disasters. This can be achieved through proper data collection combined with computer assisted modelling, analysis, production and timely dissemination of spatial information. This Master’s thesis aims to extend features of Web GIS for Risk Assessment (WGRAS) project conducted at the Department of Physical Geography and Ecosystem Science at Lund University. Modules are developed to enable easy integration of geospatial data extraction from freely available sources which are open to use and non-commercial. Implementation is facilitated with intuitive user interface which allows extracts for an area by location name(s) or area defined by two latitude and two longitude values. The other major contribution of the study focuses on visualization of geographic information in the web environment. Currently, map servers use pre-defined styling mechanism which virtually doesn’t satisfy user’s visual needs. This module enable dynamic and user-oriented map visualization allowing non-GIS experts to define (symbolization and colouring) and produce instant and meaningful presentation of maps to the end user. As recommendation, visualization of geographic data in the web environment should further be examined, especially the map servers in use should integrate powerful and meaningful dynamic styling on top existing pre-defined style. In conclusion, this thesis adds value for disaster management and analysis in terms of easy provision of geographic data and enabling clear dissection of disaster prone areas using effective visualization mechanism

    A Framework for Semantic Interoperability for Distributed Geospatial Repositories

    Get PDF
    Interoperable access of geospatial information across disparate geospatial applications has become essential. Geospatial data are highly heterogeneous -- the heterogeneity arises both at the syntactic and semantic levels. Finding and accessing appropriate data in such a distributed environment is an important research issue. The paper proposes a methodology for interoperable access of geospatial information based on Open Geospatial Consortium (OGC) specified standards. An architecture for integrating diverse geospatial data repositories has been proposed using service-based methodology. The semantic issues for discovery and retrieval of geospatial data over distributed geospatial services have also been proposed in the paper. The proposed architecture utilizes the ontological concepts for service description and subsequent discovery of services. An approach for semantic similarity assessment of geospatial services has been discussed

    Towards Web-based representation and processing of health information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online.</p> <p>Results</p> <p>The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information.</p> <p>Conclusion</p> <p>The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector.</p

    Environmental Decision-making utilizing a Web GIS to Monitor Hazardous Industrial Emissions in the Valencian community of Spain

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Air pollution is a critical issue in contemporary times. For this reason, officials and environmental managers are in need of suitable tools for visualization, manipulation and analysis of environmental data. Environmental concerns in Europe have encouraged the European Environmental Agency (EEA) to create the European Pollutant Release and Transfer Register (E-PRTR). The E-PRTR is vital and valuable because society will benefit if the data are used to improve monitoring and consequently advance environmental management. However, the data are not accessible in an interoperable way, which complicates their use and does not allow for a contribution to environmental monitoring. This paper describes a Web GIS system developed for the monitoring of industrial emissions using environmental data released by the EEA. Four research objectives are addressed: (1) design and create an interoperable spatial database to store environmental data, (2) develop a Web GIS to manipulate the spatial database, facilitate air pollution monitoring and enhance risk assessment, (3) implement OGC standards to provide data interoperability and integration into a Web GIS, (4) create a model to simulate distribution of air pollutants and assess a population’s exposure to industrial emissions. The proposed approach towards interoperability is an adoption of servicebased architecture for implementation of a three-tier Web GIS application. This system’s prototype is developed using open source tools for the Valencian Community of Spain
    • 

    corecore