102,945 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    The seamless vertical handover between (universal mobile telecommunications system) UMTS and (wireless local area network) WLAN by using hybrid scheme of Bi-mSCTP in mobile IP

    Get PDF
    Nowadays many different types of networks communicate among themselves to form heterogeneous wireless networks (HWN). Seamless vertical handover (VHO) between a Universal Mobile Telecommunications System (UMTS) and a Wireless Local Area Network (WLAN) is necessary to provide continuous internet access for mobile node (MN) as roaming across these networks is to be without interruption. To support the seamless VHO and smooth mobility in the HWN, a network layer protocol mobile IP (MIP) is exploited. MIP has several attendant issues such as hybrid routing, registration delay, data session disruption during VHO, and packet overhead. These issues occur when the data packets of the MIP are sent from a foreign agent (FA) to a home agent (HA) via a tunnel when a MN moves to a new network which will cause a triangle routing. In this paper, we propose a hybrid scheme of mobile stream control transmission protocol (mSCTP) with a bicasting mechanism or so- called Bi-mSCTP under the MIP to overcome the abovementioned triangle routing. When an MN is in the area of VHO, the proposed scheme relies on the generated mSCTP signals to allocate a new care-of- address (CoA) to the corresponding node (CN) dynamically before the link layer handover. At the same time, it inserts a bicasting flag inside the address configuration (ASCONF) data chunk to inform the CN to start the transmission over both WLAN and UMTS links. The system performances were analyzed by using the NS-2 simulation tool. The results showed that the hybrid scheme introduces approximately 1.02 and 2.64 seconds reduction in delay performance over both mSCTP and MIP schemes respectively. It also reduces the packet loss rate by more than 21.7 and 45% compared to mSCTP and MIP respectively

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    Augmentation Opportunity of Transmission Control Protocol Performance in Wireless Networks and Cellular Systems

    Get PDF
    The expansion in wireless technologies and the extensive with the wide use of mobile devices have drawn the attention of research and technological communities towards wireless environments, such as Wireless Local Area Networks (WLANs), Wireless Wide Area Networks (WWANs), and mobile systems and ad-hoc networks. Unfortunately, wired and wireless networks are expressively different in terms of link reliability, bandwidth, and time of propagation delay. By adapting new solutions for these enhanced telecommunications, superior quality, efficiency, and opportunities will be provided where wireless communications were otherwise unfeasible. Some researchers define 4G as a significant improvement of 3G, where current cellular network's issues will be solved and data transfer will play a more significant role. For others, 4G unifies cellular and wireless local area networks, and introduces new routing techniques, efficient solutions for sharing dedicated frequency bands, and an increased mobility and bandwidth capacity. This paper discussed the possible solutions and enhancements probabilities that proposed to improve the performance of Transmission Control Protocol (TCP) over different wireless networks and also the paper investigated each approach in term of advantages and disadvantages

    Overhead and Segmentation Mismatch Effect on Bluetooth WPAN Performance

    Get PDF
    Currently, Bluetooth is the most widely used technology for Wireless Personal Area Networks (WPAN). Quality-of-Service (QoS) support is critical to ensure bandwidth maximization for mobile applications based on this WPAN technology. The overhead introduced by the different layers of Bluetooth protocol may have a serious impact on WPAN performance. However, most studies of Bluetooth performance neglect this overhead and assume that data are directly transmitted over L2CAP (Logical Link Control and Adaptation Protocol) or even HCI (Host Controller Interface) layers. In fact, this option is not feasible in most Bluetooth applications, as they integrate actual devices that implement a particular Bluetooth profile, usually SPP (Serial Port Profile). The use of profiles cannot be disregarded as they guarantee the interoperability between devices from different vendors. The aim of this paper is to characterise the performance of a Bluetooth WPAN (specifically the end-to-end delay and the throughput) when profiles are utilised. This study takes into account the overhead added by the protocols taking part in the transmission of user data. This paper also explores the effect of segmentation mismatch that may appear when the maximum size for data in each layer of the architecture is different. The analysis has been focused on SPP and PAN (Personal Area Networks) profiles. In the case of the PAN profile, the study concludes that the network performance decreases for user data sizes greater than 1,472 bytes, since the excessive overhead added by the network layer is increased by the IP (Internet Proto-col) fragmentation. In the case of SPP, an inappropriate choice of the maximum data unit at RFCOMM (Radio Frequency Communication for Serial Cable Emulation Protocol based on ETSI TS 07.10) and L2CAP layers can also heavily affect the transmission delay

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan
    • 

    corecore