3,948 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Spatial Throughput Maximization of Wireless Powered Communication Networks

    Full text link
    Wireless charging is a promising way to power wireless nodes' transmissions. This paper considers new dual-function access points (APs) which are able to support the energy/information transmission to/from wireless nodes. We focus on a large-scale wireless powered communication network (WPCN), and use stochastic geometry to analyze the wireless nodes' performance tradeoff between energy harvesting and information transmission. We study two cases with battery-free and battery-deployed wireless nodes. For both cases, we consider a harvest-then-transmit protocol by partitioning each time frame into a downlink (DL) phase for energy transfer, and an uplink (UL) phase for information transfer. By jointly optimizing frame partition between the two phases and the wireless nodes' transmit power, we maximize the wireless nodes' spatial throughput subject to a successful information transmission probability constraint. For the battery-free case, we show that the wireless nodes prefer to choose small transmit power to obtain large transmission opportunity. For the battery-deployed case, we first study an ideal infinite-capacity battery scenario for wireless nodes, and show that the optimal charging design is not unique, due to the sufficient energy stored in the battery. We then extend to the practical finite-capacity battery scenario. Although the exact performance is difficult to be obtained analytically, it is shown to be upper and lower bounded by those in the infinite-capacity battery scenario and the battery-free case, respectively. Finally, we provide numerical results to corroborate our study.Comment: 15 double-column pages, 8 figures, to appear in IEEE JSAC in February 2015, special issue on wireless communications powered by energy harvesting and wireless energy transfe

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure
    • …
    corecore