28,841 research outputs found

    Distributed transmission schemes for wireless communication networks

    Get PDF
    In this thesis new techniques are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a wireless cooperative network with frequency flat links and four relays is introduced. This method can asymptotically, as the size of the symbol block increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed for which the destination node only requires a single antenna. Two- and four-relay selection schemes for wireless cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the relay to destination node links. Outage probability analysis for a four-relay selection scheme without interference is undertaken. Outage probability analysis of a full rate distributed transmission scheme with inter-relay interference is also studied for best single- and two-relay selection networks. The advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present at the relay nodes is then shown theoretically. Simulation results for outage probability analysis are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by best single-, two- and four-relay selection is presented. The cognitive amplify and forward relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection scheme is performed either with a max−min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The outage probability analyses are again confirmed by numerical evaluations

    Rate enhancement and multi-relay selection schemes for application in wireless cooperative networks

    Get PDF
    In this thesis new methods are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate, mitigate asynchronous transmission and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a two-hop synchronous network with frequency flat links and four relays is introduced. This approach can asymptotically, as the symbol block size increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed which only requires a single antenna at the destination node. Extension to asynchronous networks is then considered through the use of orthogonal frequency division multiplexing (OFDM) type transmission with a cyclic prefix, and interference cancellation techniques are designed for situations when synchronization errors are present in only the second hop or both the first and second hop. End-to-end bit error rate evaluations, with and without outer coding, are used to assess the performance of the various offset transmission schemes. Multi-relay selection methods for cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the destination to relay node links. Outage probability analysis for two and four relay selection is performed to show the advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present both at the relay nodes and the destination node. Simulation studies are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by single and multi-relay (two and four) selection is presented. The cognitive relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection is performed either with a max-min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The analyses are again confirmed by numerical evaluations

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors

    Distributed space time block coding in asynchronous cooperative relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for asynchronous cooperative relay networks is considered in this thesis. Rayleigh frequency flat fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing type transmission approach are employed to mitigate the synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied, and a new Alamouti space time block coding technique with parallel interference cancellation detection which does not require such a direct link connection and employs two relay nodes is proposed. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. Novel detection schemes are then proposed for decode-and-forward networks with closed-loop extended orthogonal coding which reduce the computational complexity of the parallel interference cancellation. Both sub-optimum and near-optimum detectors are presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approaches and their ability to mitigate synchronization errors. A relay selection approach is also formulated which maximizes spatial diversity gain and attains robustness to timing errors. Finally, a new closed-loop distributed extended orthogonal space time block coding solution for amplify-and-forward type networks which minimizes the number of feedback bits by using a cyclic rotation phase is presented. This approach utilizes an orthogonal frequency division multiplexing type transmission structure with a cyclic prefix to mitigate synchronization errors. End-to-end bit error performance evaluations verify the efficacy of the scheme and its success in overcoming synchronization errors

    Spectral-energy efficiency trade-off of relay-aided cellular networks

    Get PDF
    Wireless communication networks are traditionally designed to operate at high spectral e ciency with less emphasis on power consumption as it is assumed that endless power supply is available through the power grid where the cells are connected to. As new generations of mobile networks exhibit decreasing gains in spectral e ciency, the mobile industry is forced to consider energy reform policies in order to sustain the economic growth of itself and other industries relying on it. Consequently, the energy e ciency of conventional direct transmission cellular networks is being examined while alternative green network architectures are also explored. The relay-aided cellular network is being considered as one of the potential network architecture for energy e cient transmission. However, relaying transmission incurs multiplexing loss due to its multi-hop protocol. This, in turn, reduces network spectral e ciency. Furthermore, interference is also expected to increase with the deployment of Relay Stations (RSs) in the network. This thesis examines the power consumption of the conventional direct transmission cellular network and contributes to the development of the relay-aided cellular network. Firstly, the power consumption of the direct transmission cellular network is investigated. While most work considered transmitter side strategies, the impact of the receiver on the Base Station (BS) total power consumption is investigated here. Both the zero-forcing and minimum mean square error weight optimisation approaches are considered for both the conventional linear and successive interference cancellation receivers. The power consumption model which includes both the radio frequency transmit power and circuit power is described. The in uence of the receiver interference cancellation techniques, the number of transceiver antennas, circuit power consumption and inter-cell interference on the BS total power consumption is investigated. Secondly, the spectral-energy e ciency trade-o in the relay-aided cellular network is investigated. The signal forwarding and interference forwarding relaying paradigms are considered with the direct transmission cellular network taken as the baseline. This investigation serves to understand the dynamics in the performance trade-o . To select a suitable balance point in the trade-o , the economic e ciency metric is proposed whereby the spectral-energy e ciency pair which maximises the economic pro tability is found. Thus, the economic e ciency metric can be utilised as an alternative means to optimise the relay-aided cellular network while taking into account the inherent spectral-energy e ciency trade-o . Finally, the method of mitigating interference in the relay-aided cellular network is demonstrated by means of the proposed relay cooperation scheme. In the proposed scheme, both joint RS decoding and independent RS decoding approaches are considered during the broadcast phase while joint relay transmission is employed in the relay phase. Two user selection schemes requiring global Channel State Information (CSI) are considered. The partial semi-orthogonal user selection method with reduced CSI requirement is then proposed. As the cooperative cost limits the practicality of cooperative schemes, the cost incurred at the cooperative links between the RSs is investigated for varying degrees of RS cooperation. The performance of the relay cooperation scheme with di erent relay frequency reuse patterns is considered as well. In a nutshell, the research presented in this thesis reveals the impact of the receiver on the BS total power consumption in direct transmission cellular networks. The relayaided cellular network is then presented as an alternative architecture for energy e cient transmission. The economic e ciency metric is proposed to maximise the economic pro tability of the relay network while taking into account the existing spectral-energy e ciency trade-o . To mitigate the interference from the RSs, the relay cooperation scheme for advanced relay-aided cellular networks is proposed

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Cost-Effective Signal Processing Algorithms for Physical-Layer Security in Wireless Networks

    Get PDF
    Data privacy in traditional wireless communications is accomplished by cryptography techniques at the upper layers of the protocol stack. This thesis aims at contributing to the critical security issue residing in the physical-layer of wireless networks, namely, secrecy rate in various transmission environments. Physical-layer security opens the gate to the exploitation of channel characteristics to achieve data secure transmission. Precoding techniques, as a critical aspect in pre-processing signals prior to transmission has become an effective approach and recently drawn significant attention in the literature. In our research, novel non-linear precoders are designed focusing on the improvement of the physical-layer secrecy rate with consideration of computational complexity as well as the Bit Error Ratio (BER) performance. In the process of designing the precoder, strategies such as Lattice Reduction (LR) and Artificial Noise (AN) are employed to achieve certain design requirements. The deployment and allocation of resources such as relays to assist the transmission also have gained significant interest. In multiple-antenna relay networks, we examine various relay selection criteria with arbitrary knowledge of the channels to the users and the eavesdroppers. Furthermore, we provide novel effective relay selection criteria that can achieve a high secrecy rate performance. More importantly they do not require knowledge of the channels of the eavesdroppers and the interference. Combining the jamming technique with resource allocation of relay networks, we investigate an opportunistic relaying and jamming scheme for Multiple-Input Multiple-Output (MIMO) buffer-aided downlink relay networks. More specifically, a novel Relaying and Jamming Function Selection (RJFS) algorithm as well as a buffer-aided RJFS algorithm are developed along with their ability to achieve a higher secrecy rate. Relying on the proposed relay network, we detail the characteristics of the system, under various relay selection criteria, develop exhaustive search and greedy search-based algorithms, with or without inter-relay Interference Cancellation (IC)
    • …
    corecore