287 research outputs found

    On the Calculation of the Incomplete MGF with Applications to Wireless Communications

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TCOMM.2016.2626440The incomplete moment generating function (IMGF) has paramount relevance in communication theory, since it appears in a plethora of scenarios when analyzing the performance of communication systems. We here present a general method for calculating the IMGF of any arbitrary fading distribution. Then, we provide exact closed-form expressions for the IMGF of the very general κ-μ shadowed fading model, which includes the popular κ-μ, η-μ, Rician shadowed, and other classical models as particular cases. We illustrate the practical applicability of this result by analyzing several scenarios of interest in wireless communications: 1) physical layer security in the presence of an eavesdropper; 2) outage probability analysis with interference and background noise; 3) channel capacity with side information at the transmitter and the receiver; and 4) average bit-error rate with adaptive modulation, when the fading on the desired link can be modeled by any of the aforementioned distributions.Universidad de Málaga. Campus de Execelencia Internacional. Andalucía Tech

    A New Analysis of the DS-CDMA Cellular Uplink Under Spatial Constraints

    Full text link
    A new analysis is presented for the direct-sequence code-division multiple access (DS-CDMA) cellular uplink. For a given network topology, closed-form expressions are found for the outage probability and rate of each uplink in the presence of path-dependent Nakagami fading and log-normal shadowing. The topology may be arbitrary or modeled by a random spatial distribution for a fixed number of base stations and mobiles placed over a finite area with the separations among them constrained to exceed a minimum distance. The analysis is more detailed and accurate than existing ones and facilitates the resolution of network design issues, including the influence of the minimum base-station separation, the role of the spreading factor, and the impact of various power-control and rate-control policies. It is shown that once power control is established, the rate can be allocated according to a fixed-rate or variable-rate policy with the objective of either meeting an outage constraint or maximizing throughput. An advantage of the variable-rate policy is that it allows an outage constraint to be enforced on every uplink, whereas the fixed-rate policy can only meet an average outage constraint.Comment: 6 pages, 6 figures, to appear at International Conference on Communications (ICC) 201

    On Some Unifications Arising from the MIMO Rician Shadowed Model

    Get PDF
    This paper shows that the proposed Rician shadowed model for multi-antenna communications allows for the unification of a wide set of models, both for multiple-input multiple-output (MIMO) and single- input single-output (SISO) communications. The MIMO Rayleigh and MIMO Rician can be deduced from the MIMO Rician shadowed, and so their SISO counterparts. Other more general SISO models, besides the Rician shadowed, are included in the model, such as the κ-μ, and its recent generalization, the κ-μ shadowed model. Moreover, the SISO η-μ and Nakagami-q models are also included in the MIMO Rician shadowed model. The literature already presents the probability density function (pdf) of the Rician shadowed Gram channel matrix in terms of the well-known gamma- Wishart distribution. We here derive its moment generating function in a tractable form. Closed- form expressions for the cumulative distribution function and the pdf of the maximum eigenvalue are also carried out.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore