13 research outputs found

    Frequency-domain multiuser detection for CP-assisted DS-CDMA signals

    Get PDF
    In this paper we consider the use of CP-assisted (cyclic prefix) DS-CDMA schemes (direct sequence code division multiple access) in broadband wireless systems. We present an iterative, frequency-domain MUD (multiuser detection) receiver for the uplink transmission that combines IB-DFE (iterative block decision feedback equalization) principles with serial interference cancellation. It is shown that the performance proposed receiver can be close to the single-user MFB (matched filter bound), even for fully loaded systems, in severely time-dispersive channel and/or in the presence of strong interfering signals

    Iterative detection of multicode DS-CDMA signals with strong nonlinear distortion effects

    Get PDF
    Whenever a direct-sequence code-division multiple-access (DS-CDMA) signal is the sum of several components associated with different spreading codes [e.g., the DS-CDMA signal to be transmitted by the base station (BS) in the downlink or any multicode DS-CDMA signal], it has high envelope fluctuations and a high peak-to-mean envelope power ratio (PMEPR), setting strong linearity requirements for the power amplifiers. For this reason, it is desirable to reduce the envelope fluctuations of the transmitted signals. The use of clipping techniques combined with frequency-domain filtering was shown to be an effective way of reducing the envelope fluctuations (and, inherently, the PMEPR) of DS-CDMA signals, while maintaining the spectral occupation of the corresponding conventional DS-CDMA signals. To avoid PMEPR regrowth effects, the clipping and filtering operations can be repeated several times. However, the performance degradation due to nonlinear distortion effects on the transmitted signals can be relatively high, particularly when a very low PMEPR is intended (e.g., when a low clipping level and several iterations are adopted). This can particularly be serious if different powers are assigned to different spreading codes. To avoid significant performance degradation in these situations, we consider an improved receiver where there is an iterative estimation and cancellation of nonlinear distortion effects. Our performance results show that the proposed receiver allows significant performance improvements after just a few iterations, even when we have strong nonlinear distortion effects

    A turbo FDE technique for reduced-CP SC-based block transmission systems

    Get PDF
    For conventional cyclic-prefix (CP)-assisted block transmission systems, the CP length is selected on the basis of the expected maximum delay spread. With regard to single-carrier (SC)-based block transmission implementations, a full-length CP is recommendable, since it allows good performances through the use of simple frequency-domain equalization (FDE) techniques. In this letter, a soft-decision-directed correction (SDDC)-aided turbo FDE technique is presented for reduced-CP SC-based block transmission systems using conventional frame structures. The relations with some already known iterative FDE techniques are established, and a set of performance results is reported and discussed. The advantages of the proposed approach are emphasized, namely, the possibility of approximately achieving (besides the obvious bandwidth efficiency gain) the maximum power efficiency gain that a strong CP reduction allows.Fundação para a Ciencia e Tecnologia (FCT), Centro de Análise e processamento de Sinais (CAPS

    Técnicas de igualização adaptativas com estimativas imperfeitas do canal para os futuros sistemas 5G

    Get PDF
    Wireless communication networks have been continuously experiencing an exponential growth since their inception. The overwhelming demand for high data rates, support of a large number of users while mitigating disruptive interference are the constant research focus and it has led to the creation of new technologies and efficient techniques. Orthogonal frequency division multiplexing (OFDM) is the most common example of a technology that has come to the fore in this past decade as it provided a simple and generally ideal platform for wireless data transmission. It’s drawback of a rather high peak-to-average power ratio (PAPR) and sensitivity to phase noise, which in turn led to the adoption of alternative techniques, such as the single carrier systems with frequency domain equalization (SC-FDE) or the multi carrier systems with code division multiple access (MC-CDMA), but the nonlinear Frequency Domain Equalizers (FDE) have been of special note due to their improved performance. From these, the Iterative Block Decision Feedback Equalizer (IB-DFE) has proven itself especially promising due to its compatibility with space diversity, MIMO systems and CDMA schemes. However, the IB-DFE requires the system to have constant knowledge of the communication channel properties, that is, to have constantly perfect Channel State Information (CSI), which is both unrealistic and impractical to implement. In this dissertation we shall design an altered IB-DFE receiver that is able to properly detect signals from SC-FDMA based transmitters, even with constantly erroneous channel states. The results shall demonstrate that the proposed equalization scheme is robust to imperfect CSI (I-CSI) situations, since its performance is constantly close to the perfect CSI case, within just a few iterations.Redes sem fios têm crescido de maneira contínua e exponencial desde a sua incepção. A tremenda exigência para altas taxas de dados e o suporte para um elevado número de utilizadores sem aumentar a interferência disruptiva originada por estes são alguns dos focos que levaram ao desenvolvimento de técnicas de compensação e novas tecnologias. “Orthogonal frequency division multiplexing” (OFDM) é um dos exemplos de tecnologias que se destacaram nesta última década, visto ter fornecido uma plataforma para transmissão de dados sem-fio eficaz e simples. O seu maior problema é a alta “peak-to-average power ratio” (PAPR) e a sua sensibilidade a ruído de fase que deram motivo à adoção de técnicas alternativas, tais como os sistemas “single carrier” com “frequency domain equalization” (SC-FDE) ou os sistemas “multi-carrier” com “code division multiple access” (MC-CDMA), mas equalizadores não lineares no domínio de frequência têm sido alvo de especial atenção devido ao seu melhor desempenho. Destes, o “iterative block decision feedback equalizer” (IB-DFE) tem-se provado especialmente promissor devido à sua compatibilidade com técnicas de diversidade no espaço, sistemas MIMO e esquemas CDMA. No entanto, IB-DFE requer que o sistema tenha constante conhecimento das propriedades dos canais usados, ou seja, necessita de ter perfeito “channel state information” (CSI) constantemente, o que é tanto irrealista como impossível de implementar. Nesta dissertação iremos projetar um recetor IB-DFE alterado de forma a conseguir detetar sinais dum transmissor baseado em tecnologia SC-FDMA, mesmo com a informação de estado de canal errada. Os resultados irão então demonstrar que o novo esquema de equalização proposto é robusto para situações de CSI imperfeito (I-CSI), visto que o seu desempenho se mantém próximo dos valores esperados para CSI perfeito, em apenas algumas iterações.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    High performance faster-than-nyquist signaling

    Get PDF
    AbstractIn a wireless broadband context, multi-path dispersive channels can severely affectdata communication of Mobile Terminals (MTs) uplink.Single Carrier withFrequency-Domain Equalization (SC-FDE) has been proposed to deal with highlydispersive channels for the uplink of broadband wireless systems. However, currentsystems rely on older assumptions of the Nyquist theorem and assume that a systemneeds a minimum bandwidth 2Wper MT. Faster-Than-Nyquist (FTN) assumesthat it is possible to employ a bandwidth as low as 0.802 of the original Nyquistbandwidth with minimum loss - despite this, the current literature has only proposedcomplex receivers for a simple characterization of the wireless channel. Furthermore,the uplink of SC-FDE can be severely affected by a deep-fade and or poor channelconditions; to cope with such difficulties Diversity Combining (DC) Hybrid ARQ(H-ARQ) is a viable technique, since it combines the several packet copies sent bya MT to create reliable packet symbols at the receiver.In this thesis we consider the use of FTN signaling for the uplink of broadbandwireless systems employing SC-FDE based on the Iterative Block with DecisionFeedback Equalization (IB-DFE) receiver with a simple scheduled access HybridAutomatic Repeat reQuest (H-ARQ) specially designed taking into account thecharacteristics of FTN signals. This approach achieves a better performance thanNyquist signaling by taking advantage of the additional bandwidth employed of aroot-raised cosine pulse for additional diversity.Alongside a Packet Error Rate (PER) analytical model, simulation results show that this receiver presents a better performance when compared with a regular system,with higher system throughputs and a lower Energy per Useful Packet (EPUP)

    Iterative Equalization and Interference Alignment for Multiuser MIMO HetNets with Imperfect CSI

    Get PDF
    In this paper we consider a scenario, where several small-cells work under the same coverage area and spectrum of a macrocell. The signals stemming from the small-cell (macrocell) users if not carefully dealt with will generate harmful interference into the macrocell (small-cell). To tackle this problem interference alignment and iterative equalization techniques are considered. By using IA all interference generated by the small-cell (macrocell) users is aligned along a low dimensional subspace, at the macrocell (small-cells). This reduces considerably the amount of resources allocated, to enable the coexistence of the two systems. However, perfect IA requires the availability of error-free channel state information (CSI) at the transmitters. Due to CSI errors one can have substantial performance degradation due to imperfect alignments. Since in this work the IA precoders are based on imperfect CSI, an efficient iterative space-frequency equalization is designed at the receiver side to cope with the residual aligned interference.The results demonstrate that iterative equalization is robust to imperfect CSI and removes efficiently the interference generated by the poorly aligned interference. Close to matched filter bound performance is achieved, with a very few number of iterations
    corecore