1,586 research outputs found

    Resilience Enhancement Strategies for Modern Power Systems

    Get PDF
    The frequency of extreme events (e.g., hurricanes, earthquakes, and floods) and man-made attacks (cyber and physical attacks) has increased dramatically in recent years. These events have severely impacted power systems ranging from long outage times to major equipment (e.g., substations, transmission lines, and power plants) destructions. Also, the massive integration of information and communication technology to power systems has evolved the power systems into what is known as cyber-physical power systems (CPPSs). Although advanced technologies in the cyber layer improve the operation and control of power systems, they introduce additional vulnerabilities to power system performance. This has motivated studying power system resilience evaluation and enhancements methods. Power system resilience can be defined as ``The ability of a system to prepare for, absorb, adapt to, and recover from disruptive events''. Assessing resilience enhancement strategies requires further and deeper investigation because of several reasons. First, enhancing the operational and planning resilience is a mathematically involved problem accompanied with many challenges related to modeling and computation methods. The complexities of the problem increases in CPPSs due to the large number and diverse behavior of system components. Second, a few studies have given attention to the stochastic behavior of extreme events and their accompanied impacts on the system resilience level yielding less realistic modeling and higher resilience level. Also, the correlation between both cyber and physical layers within the context of resilience enhancement require leveraging sophisticated modeling approaches which is still under investigation. Besides, the role of distributed energy resources in planning-based and operational-based resilience enhancements require further investigation. This calls for developing enhancement strategies to improve resilience of power grids against extreme events. This dissertation is divided into four parts as follows. Part I: Proactive strategies: utilizing the available system assets to prepare the power system prior to the occurrence of an extreme event to maintain an acceptable resilience level during a severe event. Various system generation and transmission constraints as well as the spatiotemporal behavior of extreme events should be properly modeled for a feasible proactive enhancement plan. In this part, two proactive strategies are proposed against weather-related extreme events and cyber-induced failure events. First, a generation redispatch strategy is formulated to reduce the amount of load curtailments in transmission systems against hurricanes and wildfires. Also, a defensive islanding strategy is studied to isolate vulnerable system components to cyber failures in distribution systems. Part II: Corrective strategies: remedial actions during an extreme event for improved performance. The negative impacts of extreme weather events can be mitigated, reduced, or even eliminated through corrective strategies. However, the high stochastic nature of resilience-based problem induces further complexities in modeling and providing feasible solutions. In this part, reinforcement learning approaches are leveraged to develop a control-based environment for improved resilience. Three corrective strategies are studied including distribution network reconfiguration, allocating and sizing of distributed energy resources, and dispatching reactive shunt compensators. Part III: Restorative strategies: retain the power service to curtailed loads in a fast and efficient means after a diverse event. In this part, a resilience enhancement strategy is formulated based on dispatching distributed generators for minimal load curtailments and improved restorative behavior. Part IV: Uncertainty quantification: Impacts of uncertainties on modeling and solution accuracy. Though there exist several sources of stochasticity in power systems, this part focuses on random behavior of extreme weather events and the associated impacts on system component failures. First, an assessment framework is studied to evaluate the impacts of ice storms on transmission systems and an evaluation method is developed to quantify the hurricane uncertainties for improved resilience. Additionally, the role of unavailable renewable energy resources on improved system resilience during extreme hurricane events is studied. The methodologies and results provided in this dissertation can be useful for system operators, utilities, and regulators towards enhancing resilience of CPPSs against weather-related and cyber-related extreme events. The work presented in this dissertation also provides potential pathways to leverage existing system assets and resources integrated with recent advanced computational technologies to achieve resilient CPPSs

    Flexible Transmission: A Comprehensive Review of Concepts, Technologies, and Market

    Full text link
    As global concerns regarding climate change are increasing worldwide, the transition towards clean energy sources has accelerated. Accounting for a large share of energy consumption, the electricity sector is experiencing a significant shift towards renewable energy sources. To accommodate this rapid shift, the transmission system requires major upgrades. Although enhancing grid capacity through transmission system expansion is always a solution, this solution is very costly and requires a protracted permitting process. The concept of flexible transmission encompasses a broad range of technologies and market tools that enable effective reconfiguration and manipulation of the power grid for leveraged dispatch of renewable energy resources. The proliferation of such technologies allows for enhanced transfer capability over the current transmission network, thus reducing the need for grid expansion projects. This paper comprehensively reviews flexible transmission technologies and their role in achieving a net-zero carbon emission grid vision. Flexible transmission definitions from different viewpoints are discussed, and mathematical measures to quantify grid flexibility are reviewed. An extensive range of technologies enhancing flexibility across the grid is introduced and explored in detail. The environmental impacts of flexible transmission, including renewable energy utilization and carbon emission reduction, are presented. Finally, market models required for creating proper incentives for the deployment of flexible transmission and regulatory barriers and challenges are discussed

    A framework for assessing robustness of water networks and computational evaluation of resilience.

    Get PDF
    Arid regions tend to take careful measures to ensure water supplies are secured to consumers, to help provide the basis for further development. Water distribution network is the most expensive part of the water supply infrastructure and it must maintain performance during unexpected incidents. Many aspects of performance have previously been discussed separately, including reliability, vulnerability, flexibility and resilience. This study aimed to develop a framework to bring together these aspects as found in the literature and industry practice, and bridge the gap between them. Semi-structured interviews with water industry experts were used to examine the presence and understanding of robustness factors. Thematic analysis was applied to investigate these and inform a conceptual framework including the component and topological levels. Robustness was described by incorporating network reliability and resiliency. The research focused on resiliency as a network-level concept derived from flexibility and vulnerability. To utilise this new framework, the study explored graph theory to formulate metrics for flexibility and vulnerability that combine network topology and hydraulics. The flexibility metric combines hydraulic edge betweenness centrality, representing hydraulic connectivity, and hydraulic edge load, measuring utilised capacity. Vulnerability captures the impact of failures on the ability of the network to supply consumers, and their sensitivity to disruptions, by utilising node characteristics, such as demand, population and alternative supplies. These measures together cover both edge (pipe) centric and node (demand) centric perspectives. The resiliency assessment was applied to several literature benchmark networks prior to using a real case network. The results show the benefits of combining hydraulics with topology in robustness analysis. The assessment helps to identify components or sections of importance for future expansion plans or maintenance purposes. The study provides a novel viewpoint overarching the gap between literature and practice, incorporating different critical factors for robust performance

    Topological changes in data-driven dynamic security assessment for power system control

    Get PDF
    The integration of renewable energy sources into the power system requires new operating paradigms. The higher uncertainty in generation and demand makes the operations much more dynamic than in the past. Novel operating approaches that consider these new dynamics are needed to operate the system close to its physical limits and fully utilise the existing grid assets. Otherwise, expensive investments in redundant grid infrastructure become necessary. This thesis reviews the key role of digitalisation in the shift toward a decarbonised and decentralised power system. Algorithms based on advanced data analytic techniques and machine learning are investigated to operate the system assets at the full capacity while continuously assessing and controlling security. The impact of topological changes on the performance of these data-driven approaches is studied and algorithms to mitigate this impact are proposed. The relevance of this study resides in the increasingly higher frequency of topological changes in modern power systems and in the need to improve the reliability of digitalised approaches against such changes to reduce the risks of relying on them. A novel physics-informed approach to select the most relevant variables (or features) to the dynamic security of the system is first proposed and then used in two different three-stages workflows. In the first workflow, the proposed feature selection approach allows to train classification models from machine learning (or classifiers) close to real-time operation improving their accuracy and robustness against uncertainty. In the second workflow, the selected features are used to define a new metric to detect high-impact topological changes and train new classifiers in response to such changes. Subsequently, the potential of corrective control for a dynamically secure operation is investigated. By using a neural network to learn the safety certificates for the post-fault system, the corrective control is combined with preventive control strategies to maintain the system security and at the same time reduce operational costs and carbon emissions. Finally, exemplary changes in assumptions for data-driven dynamic security assessment when moving from high inertia to low inertia systems are questioned, confirming that using machine learning based models will make significantly more sense in future systems. Future research directions in terms of data generation and model reliability of advanced digitalised approaches for dynamic security assessment and control are finally indicated.Open Acces

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    Power system stability scanning and security assessment using machine learning

    Get PDF
    Future grids planning requires a major departure from conventional power system planning, where only a handful of the most critical scenarios is analyzed. To account for a wide range of possible future evolutions, scenario analysis has been proposed in many industries. As opposed to the conventional power system planning, where the aim is to ļ¬nd an optimal transmission and/or generation expansion plan for an existing grid, the aim in future grids scenario analysis is to analyze possible evolution pathways to inform power system planning and policy making. Therefore, future gridsā€™ planning may involve large amount of scenarios and the existing planning tools may no longer suitable. Other than the raised future gridsā€™ planning issues, operation of future grids using conventional tools is also challenged by the new features of future grids such as intermittent generation, demand response and fast responding power electronic plants which lead to much more diverse operation conditions compared to the existing networks. Among all operation issues, monitoring stability as well as security of a power system and action with deliberated preventive or remedial adjustment is of vital important. On- line Dynamic Security Assessment (DSA) can evaluate security of a power system almost instantly when current or imminent operation conditions are supplied. The focus of this dissertation are, for future grid planning, to develop a framework using Machine Learning (ML) to effectively assess the security of future grids by analyzing a large amount of the scenarios; for future grids operation, to propose approaches to address technique issues brought by future gridsā€™ diverse operation conditions using ML techniques. Unsupervised learning, supervised learning and semi-supervised learning techniques are utilized in a set of proposed planning and operation security assessment tools

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid
    • ā€¦
    corecore