6,254 research outputs found

    Dense Scattering Layer Removal

    Full text link
    We propose a new model, together with advanced optimization, to separate a thick scattering media layer from a single natural image. It is able to handle challenging underwater scenes and images taken in fog and sandstorm, both of which are with significantly reduced visibility. Our method addresses the critical issue -- this is, originally unnoticeable impurities will be greatly magnified after removing the scattering media layer -- with transmission-aware optimization. We introduce non-local structure-aware regularization to properly constrain transmission estimation without introducing the halo artifacts. A selective-neighbor criterion is presented to convert the unconventional constrained optimization problem to an unconstrained one where the latter can be efficiently solved.Comment: 10 pages, 10 figures, Siggraph Asia 2013 Technial Brief

    Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset

    Full text link
    Underwater images suffer from color distortion and low contrast, because light is attenuated while it propagates through water. Attenuation under water varies with wavelength, unlike terrestrial images where attenuation is assumed to be spectrally uniform. The attenuation depends both on the water body and the 3D structure of the scene, making color restoration difficult. Unlike existing single underwater image enhancement techniques, our method takes into account multiple spectral profiles of different water types. By estimating just two additional global parameters: the attenuation ratios of the blue-red and blue-green color channels, the problem is reduced to single image dehazing, where all color channels have the same attenuation coefficients. Since the water type is unknown, we evaluate different parameters out of an existing library of water types. Each type leads to a different restored image and the best result is automatically chosen based on color distribution. We collected a dataset of images taken in different locations with varying water properties, showing color charts in the scenes. Moreover, to obtain ground truth, the 3D structure of the scene was calculated based on stereo imaging. This dataset enables a quantitative evaluation of restoration algorithms on natural images and shows the advantage of our method

    Unsupervised Single Image Underwater Depth Estimation

    Full text link
    Depth estimation from a single underwater image is one of the most challenging problems and is highly ill-posed. Due to the absence of large generalized underwater depth datasets and the difficulty in obtaining ground truth depth-maps, supervised learning techniques such as direct depth regression cannot be used. In this paper, we propose an unsupervised method for depth estimation from a single underwater image taken `in the wild' by using haze as a cue for depth. Our approach is based on indirect depth-map estimation where we learn the mapping functions between unpaired RGB-D terrestrial images and arbitrary underwater images to estimate the required depth-map. We propose a method which is based on the principles of cycle-consistent learning and uses dense-block based auto-encoders as generator networks. We evaluate and compare our method both quantitatively and qualitatively on various underwater images with diverse attenuation and scattering conditions and show that our method produces state-of-the-art results for unsupervised depth estimation from a single underwater image.Comment: Accepted for publication at IEEE International Conference on Image Processing (ICIP), 201

    Single Image Restoration for Participating Media Based on Prior Fusion

    Full text link
    This paper describes a method to restore degraded images captured in a participating media -- fog, turbid water, sand storm, etc. Differently from the related work that only deal with a medium, we obtain generality by using an image formation model and a fusion of new image priors. The model considers the image color variation produced by the medium. The proposed restoration method is based on the fusion of these priors and supported by statistics collected on images acquired in both non-participating and participating media. The key of the method is to fuse two complementary measures --- local contrast and color data. The obtained results on underwater and foggy images demonstrate the capabilities of the proposed method. Moreover, we evaluated our method using a special dataset for which a ground-truth image is available.Comment: This paper is under consideration at Pattern Recognition Letter

    Real-world Underwater Enhancement: Challenges, Benchmarks, and Solutions

    Full text link
    Underwater image enhancement is such an important low-level vision task with many applications that numerous algorithms have been proposed in recent years. These algorithms developed upon various assumptions demonstrate successes from various aspects using different data sets and different metrics. In this work, we setup an undersea image capturing system, and construct a large-scale Real-world Underwater Image Enhancement (RUIE) data set divided into three subsets. The three subsets target at three challenging aspects for enhancement, i.e., image visibility quality, color casts, and higher-level detection/classification, respectively. We conduct extensive and systematic experiments on RUIE to evaluate the effectiveness and limitations of various algorithms to enhance visibility and correct color casts on images with hierarchical categories of degradation. Moreover, underwater image enhancement in practice usually serves as a preprocessing step for mid-level and high-level vision tasks. We thus exploit the object detection performance on enhanced images as a brand new task-specific evaluation criterion. The findings from these evaluations not only confirm what is commonly believed, but also suggest promising solutions and new directions for visibility enhancement, color correction, and object detection on real-world underwater images.Comment: arXiv admin note: text overlap with arXiv:1712.04143 by other author

    Visual-Quality-Driven Learning for Underwater Vision Enhancement

    Full text link
    The image processing community has witnessed remarkable advances in enhancing and restoring images. Nevertheless, restoring the visual quality of underwater images remains a great challenge. End-to-end frameworks might fail to enhance the visual quality of underwater images since in several scenarios it is not feasible to provide the ground truth of the scene radiance. In this work, we propose a CNN-based approach that does not require ground truth data since it uses a set of image quality metrics to guide the restoration learning process. The experiments showed that our method improved the visual quality of underwater images preserving their edges and also performed well considering the UCIQE metric.Comment: Accepted for publication and presented in 2018 IEEE International Conference on Image Processing (ICIP

    Single Image Dehazing through Improved Atmospheric Light Estimation

    Full text link
    Image contrast enhancement for outdoor vision is important for smart car auxiliary transport systems. The video frames captured in poor weather conditions are often characterized by poor visibility. Most image dehazing algorithms consider to use a hard threshold assumptions or user input to estimate atmospheric light. However, the brightest pixels sometimes are objects such as car lights or streetlights, especially for smart car auxiliary transport systems. Simply using a hard threshold may cause a wrong estimation. In this paper, we propose a single optimized image dehazing method that estimates atmospheric light efficiently and removes haze through the estimation of a semi-globally adaptive filter. The enhanced images are characterized with little noise and good exposure in dark regions. The textures and edges of the processed images are also enhanced significantly.Comment: Multimedia Tools and Applications (2015

    Towards Real-Time Advancement of Underwater Visual Quality with GAN

    Full text link
    Low visual quality has prevented underwater robotic vision from a wide range of applications. Although several algorithms have been developed, real-time and adaptive methods are deficient for real-world tasks. In this paper, we address this difficulty based on generative adversarial networks (GAN), and propose a GAN-based restoration scheme (GAN-RS). In particular, we develop a multi-branch discriminator including an adversarial branch and a critic branch for the purpose of simultaneously preserving image content and removing underwater noise. In addition to adversarial learning, a novel dark channel prior loss also promotes the generator to produce realistic vision. More specifically, an underwater index is investigated to describe underwater properties, and a loss function based on the underwater index is designed to train the critic branch for underwater noise suppression. Through extensive comparisons on visual quality and feature restoration, we confirm the superiority of the proposed approach. Consequently, the GAN-RS can adaptively improve underwater visual quality in real time and induce an overall superior restoration performance. Finally, a real-world experiment is conducted on the seabed for grasping marine products, and the results are quite promising. The source code is publicly available at https://github.com/SeanChenxy/GAN_RS

    Marine Wireless Big Data: Efficient Transmission, Related Applications, and Challenges

    Full text link
    The vast volume of marine wireless sampling data and its continuously explosive growth herald the coming of the era of marine wireless big data. Two challenges imposed by these data are how to fast, reliably, and sustainably deliver them in extremely hostile marine environments and how to apply them after collection. In this article, we first propose an architecture of heterogeneous marine networks that flexibly exploits the existing underwater wireless techniques as a potential solution for fast data transmission. We then investigate the possibilities of and develop the schemes for energy-efficient and reliable undersea transmission without or slightly with data rate reduction. After discussing the data transmission, we summarize the possible applications of the collected big data and particularly focus on the problems of applying these data in sea-surface object detection and marine object recognition. Open issues and challenges that need to be further explored regarding transmission and detection/recognition are also discussed in the article.Comment: 7 pages, 5 figures, accepted by the IEEE Wireless Communication

    Depth Estimation on Underwater Omni-directional Images Using a Deep Neural Network

    Full text link
    In this work, we exploit a depth estimation Fully Convolutional Residual Neural Network (FCRN) for in-air perspective images to estimate the depth of underwater perspective and omni-directional images. We train one conventional and one spherical FCRN for underwater perspective and omni-directional images, respectively. The spherical FCRN is derived from the perspective FCRN via a spherical longitude-latitude mapping. For that, the omni-directional camera is modeled as a sphere, while images captured by it are displayed in the longitude-latitude form. Due to the lack of underwater datasets, we synthesize images in both data-driven and theoretical ways, which are used in training and testing. Finally, experiments are conducted on these synthetic images and results are displayed in both qualitative and quantitative way. The comparison between ground truth and the estimated depth map indicates the effectiveness of our method.Comment: 7 pages, 8 figures, 1 table, accepted by 2019 ICRA workshop "Underwater Robotics Perception
    • …
    corecore