1,017 research outputs found

    Adaptive end-to-end optimization of mobile video streaming using QoS negotiation

    Get PDF
    Video streaming over wireless links is a non-trivial problem due to the large and frequent changes in the quality of the underlying radio channel combined with latency constraints. We believe that every layer in a mobile system must be prepared to adapt its behavior to its environment. Thus layers must be capable of operating in multiple modes; each mode will show a different quality and resource usage. Selecting the right mode of operation requires exchange of information between interacting layers. For example, selecting the best channel coding requires information about the quality of the channel (capacity, bit-error-rate) as well as the requirements (latency, reliability) of the compressed video stream generated by the source encoder. In this paper we study the application of our generic QoS negotiation scheme to a specific configuration for mobile video transmission. We describe the results of experiments studying the overall effectiveness, stability, and dynamics of adaptation of our distributed optimization approach

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Wireless Video Transmission with Over-the-Air Packet Mixing

    Full text link
    In this paper, we propose a system for wireless video transmission with a wireless physical layer (PHY) that supports cooperative forwarding of interfered/superimposed packets. Our system model considers multiple and independent unicast transmissions between network nodes while a number of them serve as relays of the interfered/superimposed signals. For this new PHY the average transmission rate that each node can achieve is estimated first. Next, we formulate a utility optimization framework for the video transmission problem and we show that it can be simplified due to the features of the new PHY. Simulation results reveal the system operating regions for which superimposing wireless packets is a better choice than a typical cooperative PHY.Comment: 2012 Packet Video Worksho

    Cross-layer optimization of unequal protected layered video over hierarchical modulation

    Get PDF
    Abstract-unequal protection mechanisms have been proposed at several layers in order to improve the reliability of multimedia contents, especially for video data. The paper aims at implementing a multi-layer unequal protection scheme, which is based on a Physical-Transport-Application cross-layer design. Hierarchical modulation, in the physical layer, has been demonstrated to increase the overall user capacity of a wireless communications. On the other hand, unequal erasure protection codes at the transport layer turned out to be an efficient method to protect video data generated by the application layer by exploiting their intrinsic properties. In this paper, the two techniques are jointly optimized in order to enable recovering lost data in case the protection is performed separately. We show that the cross-layer design proposed herein outperforms the performance of hierarchical modulation and unequal erasure codes taken independently

    Adaptive-Truncated-HARQ-Aided Layered Video Streaming Relying on Interlayer FEC Coding

    Full text link
    corecore