12,525 research outputs found

    Kate's Model Verification Tools

    Get PDF
    Kennedy Space Center's Knowledge-based Autonomous Test Engineer (KATE) is capable of monitoring electromechanical systems, diagnosing their errors, and even repairing them when they crash. A survey of KATE's developer/modelers revealed that they were already using a sophisticated set of productivity enhancing tools. They did request five more, however, and those make up the body of the information presented here: (1) a transfer function code fitter; (2) a FORTRAN-Lisp translator; (3) three existing structural consistency checkers to aid in syntax checking their modeled device frames; (4) an automated procedure for calibrating knowledge base admittances to protect KATE's hardware mockups from inadvertent hand valve twiddling; and (5) three alternatives for the 'pseudo object', a programming patch that currently apprises KATE's modeling devices of their operational environments

    Low-Cost Compressive Sensing for Color Video and Depth

    Full text link
    A simple and inexpensive (low-power and low-bandwidth) modification is made to a conventional off-the-shelf color video camera, from which we recover {multiple} color frames for each of the original measured frames, and each of the recovered frames can be focused at a different depth. The recovery of multiple frames for each measured frame is made possible via high-speed coding, manifested via translation of a single coded aperture; the inexpensive translation is constituted by mounting the binary code on a piezoelectric device. To simultaneously recover depth information, a {liquid} lens is modulated at high speed, via a variable voltage. Consequently, during the aforementioned coding process, the liquid lens allows the camera to sweep the focus through multiple depths. In addition to designing and implementing the camera, fast recovery is achieved by an anytime algorithm exploiting the group-sparsity of wavelet/DCT coefficients.Comment: 8 pages, CVPR 201

    On the saturation effects and start jump of Gaussian modes in oscillators

    Get PDF
    The present paper deals with the interaction of a Gaussian mode with a homogeneous and an inhomogeneous laser transition. The interaction of the beam with the medium in a laser is treated by taking into account the spatial distribution of both radiation and gain. The intensity characteristics are very different from those obtained for a one-dimensional interaction of a plane wave with a saturating medium. In the presence of a small-signal gain profile the threshold condition requires much higher inversion densities along the optic axis than by ignoring this profile. For gas lasers, for instance, having a small-signal gain profile that is approximately described by a zero-order Bessel function, the threshold inversion density can be about 50 percent higher. For high-power systems the saturation of the medium by the Gaussian intensity distribution results in a considerable amount of radial radiation transport. For homogeneous transitions this amount is about equal to the stimulated emission and for inhomogeneous transitions it is about half of it, independent of the beamwidth. Further, it is found that if one slowly passes the threshold condition for laser action, the intensity jumps from zero to a certain value and vice versa. This effect has also been verified experimentally

    Adapting the Core Language Engine to French and Spanish

    Full text link
    We describe how substantial domain-independent language-processing systems for French and Spanish were quickly developed by manually adapting an existing English-language system, the SRI Core Language Engine. We explain the adaptation process in detail, and argue that it provides a fairly general recipe for converting a grammar-based system for English into a corresponding one for a Romance language.Comment: 9 pages, aclap.sty; to appear in NLP+IA 96; see also http://www.cam.sri.com

    Energy management system for glider type vehicle Patent

    Get PDF
    Data processing and display system for terminal guidance of X-15 aircraf

    Nonsymmorphic symmetry-required band crossings in topological semimetals

    Full text link
    We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered: (i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the algebra of the symmetry operators. To characterize these band degeneracies we introduce a \emph{global} topological charge and show that it is of Z2\mathbb{Z}_2 type, which is in contrast to the \emph{local} topological charge of Fermi points in, say, Weyl semimetals. To illustrate these concepts, we discuss the π\pi-flux state as well as the SSH model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic two-band systems.Comment: 6.5 pages, 4 figure

    Electronic equipment, systems, and techniques: A compilation

    Get PDF
    Electronic circuits with specialized computer applications and control circuits are presented. Patent information is included

    Transient polarization dynamics in a CO2_2 laser

    Get PDF
    We study experimentally and theoretically the polarization alternation during the switch-on transient of a quasi-isotropic CO2_2 laser emitting on the fundamental mode. The observed transient dynamics is well reproduced by means of a model which provides a quantitative discrimination between the intrinsic asymmetry due to the kinetic coupling of molecules with different angular momenta, and the extrinsic anisotropies, due to a tilted intracavity window. Furthermore, the experiment provides a numerical assignment for the decay rate of the coherence term for a CO2_2 laser.Comment: 14 pages, 6 figures, submitted to Opt. Com
    • …
    corecore