160 research outputs found

    On a class of translation planes of square order

    Get PDF
    AbstractA class of translation planes of order q2, where q = pr, p is a prime, p ⩾7, p ≠± 1 (mod 10) and r is an odd natural number is constructed and the translation complements of these planes are determined. A property shared by all these planes is that the translation complement fixes a distinguished point and divides the remaining distinguished points into two orbits of length q and q2 − q. The order of the translation complement is rq(q − 1)2 except for q = 7 and q = 13. The translation complements of these exceptional cases are also briefly studied. The class of planes considered in this paper are distinct from the classes of translation planes of S.D. Cohen and M.J. Ganley [Quart. J. Math. Oxford, 35 (1984) 101–113]

    Central aspects of skew translation quadrangles, I

    Full text link
    Except for the Hermitian buildings H(4,q2)\mathcal{H}(4,q^2), up to a combination of duality, translation duality or Payne integration, every known finite building of type B2\mathbb{B}_2 satisfies a set of general synthetic properties, usually put together in the term "skew translation generalized quadrangle" (STGQ). In this series of papers, we classify finite skew translation generalized quadrangles. In the first installment of the series, as corollaries of the machinery we develop in the present paper, (a) we obtain the surprising result that any skew translation quadrangle of odd order (s,s)(s,s) is a symplectic quadrangle; (b) we determine all skew translation quadrangles with distinct elation groups (a problem posed by Payne in a less general setting); (c) we develop a structure theory for root-elations of skew translation quadrangles which will also be used in further parts, and which essentially tells us that a very general class of skew translation quadrangles admits the theoretical maximal number of root-elations for each member, and hence all members are "central" (the main property needed to control STGQs, as which will be shown throughout); (d) we solve the Main Parameter Conjecture for a class of STGQs containing the class of the previous item, and which conjecturally coincides with the class of all STGQs.Comment: 66 pages; submitted (December 2013

    Abstract hyperovals, partial geometries, and transitive hyperovals

    Get PDF
    Includes bibliographical references.2015 Summer.A hyperoval is a (q+2)- arc of a projective plane π, of order q with q even. Let G denote the collineation group of π containing a hyperoval Ω. We say that Ω is transitive if for any pair of points x, y is an element of Ω, there exists a g is an element of G fixing Ω setwise such that xg = y. In1987, Billotti and Korchmaros proved that if 4||G|, then either Ω is the regular hyperoval in PG(2,q) for q=2 or 4 or q = 16 and |G||144. In 2005, Sonnino proved that if |G| = 144, then π is desarguesian and Ω is isomorphic to the Lunelli-Sce hyperoval. For our main result, we show that if G is the collineation group of a projective plane containing a transitivehyperoval with 4 ||G|, then |G| = 144 and Ω is isomorphic to the Lunelli-Sce hyperoval. We also show that if A(X) is an abstract hyperoval of order n ≡ 2(mod 4); then |Aut(A(X))| is odd. If A(X) is an abstract hyperoval of order n such that Aut(A(X)) contains two distinct involutions with |FixX(g)| and |FixX(ƒ)| ≥ 4. Then we show that FixX(g) ≠ FixX(ƒ). We also show that there is no hyperoval of order 12 admitting a group whose order is divisible by 11 or 13, by showing that there is no partial geometry pg(6, 10, 5) admitting a group of order 11 or of order 13. Finally, we were able to show that there is no hyperoval in a projective plane of order 12 with a dihedral subgroup of order 14, by showing that that there is no partial geometry pg(7, 12, 6) admitting a dihedral group of order 14. The latter results are achieved by studying abstract hyperovals and their symmetries

    Translation planes of order q3 which admits SL(2, q)

    Get PDF

    SL(2,q)-Unitals

    Get PDF
    Unitals of order nn are incidence structures consisting of n3+1n^3+1 points such that each block is incident with n+1n+1 points and such that there are unique joining blocks. In the language of designs, a unital of order nn is a 22-(n3+1,n+1,1)(n^3+1,n+1,1) design. An affine unital is obtained from a unital by removing one block and all the points on it. A unital can be obtained from an affine unital via a parallelism on the short blocks. We study so-called (affine) SL(2,q)\mathrm{SL}(2,q)-unitals, a special construction of (affine) unitals of order qq where qq is a prime power. We show several results on automorphism groups and translations of those unitals, including a proof that one block is fixed by the full automorphism group under certain conditions. We introduce a new class of parallelisms, occurring in every affine SL(2,q)\mathrm{SL}(2,q)-unital of odd order. Finally, we present the results of a computer search, including three new affine SL(2,8)\mathrm{SL}(2,8)-unitals and twelve new SL(2,4)\mathrm{SL}(2,4)-unitals
    • …
    corecore