5,741 research outputs found

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.

    Bayesian inference of biochemical kinetic parameters using the linear noise approximation

    Get PDF
    Background Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data. Results We use the linear noise approximation to model biochemical reactions through a stochastic dynamic model which essentially approximates a diffusion model by an ordinary differential equation model with an appropriately defined noise process. An explicit formula for the likelihood function can be derived allowing for computationally efficient parameter estimation. The proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov chain Monte Carlo. Conclusion The major advantage of the method is that in contrast to the more established diffusion approximation based methods the computationally costly methods of data augmentation are not necessary. Our approach also allows for unobserved variables and measurement error. The application of the method to both simulated and experimental data shows that the proposed methodology provides a useful alternative to diffusion approximation based methods

    Energy-level quantization in YBa2Cu3O7-x phase-slip nanowires

    Full text link
    Significant progress has been made in the development of superconducting quantum circuits, however new quantum devices that have longer decoherence times at higher temperatures are urgently required for quantum technologies. Superconducting nanowires with quantum phase slips are promising candidates for use in novel devices that operate on quantum principles. Here, we demonstrate ultra-thin YBa2Cu3O7-x nanowires with phase-slip dynamics and study their switching-current statistics at temperatures below 20 K. We apply theoretical models that were developed for Josephson junctions and show that our results provide strong evidence for energy-level quantization in the nanowires. The crossover temperature to the quantum regime is 12-13 K, while the lifetime in the excited state exceeds 20 ms at 5.4 K. Both values are at least one order of magnitude higher than those in conventional Josephson junctions based on low-temperature superconductors. We also show how the absorption of a single photon changes the phase-slip and quantum state of a nanowire, which is important for the development of single-photon detectors with high operating temperature and superior temporal resolution. Our findings pave the way for a new class of superconducting nanowire devices for quantum sensing and computing

    Normal Mode Determination of Perovskite Crystal Structures with Octahedral Rotations: Theory and Applications

    Full text link
    Nuclear site analysis methods are used to enumerate the normal modes of ABX3ABX_{3} perovskite polymorphs with octahedral rotations. We provide the modes of the fourteen subgroups of the cubic aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of the BX6BX_{6} octahedra with different sense and amplitude about high symmetry axes. We tabulate all normal modes of each tilt system and specify the contribution of each atomic species to the mode displacement pattern, elucidating the physical meaning of the symmetry unique modes. We have systematically generated 705 schematic atomic displacement patterns for the normal modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative examples how to use these tables to identify the octahedral rotations, symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing distortions of the BX6BX_{6} octahedra, and the associated Raman selection rules. We anticipate that these tables and schematics will be useful in understanding the lattice dynamics of bulk perovskites and would serve as reference point in elucidating the atomic origin of a wide range of physical properties in synthetic perovskite thin films and superlattices.Comment: 17 pages, 3 figures, 17 tables. Supporting information accessed through link specified within manuscrip

    Electronic and magnetic properties in strongly correlated heterostructures

    Full text link
    We present a theoretical study of a model heterostructure for a Mott-insulator sandwiched between two band insulators, such as SrTiO3/LaTiO3. Particular emphasis is given on the interplay between magnetism and inhomogeneous charge distributions. Our mean-field analysis of the generalized Hubbard model displays numerous ordered phases in the ground-state phase diagram. In particular, we find a canted antiferromagnetic state near the interface when antiferromagnetic-ordering exists inside the Mott insulator. A checkerboard charge-ordering proposed previously is also stabilized for large long-range Coulomb interactions. Regarding its origin we also point out the importance of interlayer spin-mediated interactions. It is further shown that such a strong spin-charge coupling gives rise to pronounced magnetic/charge order phase transitions in external magnetic fields: a firstorder metamagnetic transition and a reentrant charge-order transition with checkerboard pattern. The mechanisms stabilizing these intriguing phases are explored through a detailed analysis of the physical quantities with special focus on the spin-charge interplay.Comment: 13 pages, 15 figure
    corecore