20,660 research outputs found

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    From Nested-Loop to Join Queries in OODB

    Get PDF
    Most declarative SQL-like query languages for object-oriented database systems are orthogonal languages allowing for arbitrary nesting of expressions in the select-, from-, and where-clause. Expressions in the from-clause may be base tables as well as set-valued attributes. In this paper, we propose a general strategy for the optimization of nested OOSQL queries. As in the relational model, the translation/optimization goal is to move from tuple- to set-oriented query processing. Therefore, OOSQL is translated into the algebraic language ADL, and by means of algebraic rewriting nested queries are transformed into join queries as far as possible. Three different optimization options are described, and a strategy to assign priorities to options is proposed

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators

    Storing RDF as a Graph

    Get PDF
    RDF is the first W3C standard for enriching information resources of the Web with detailed meta data. The semantics of RDF data is defined using a RDF schema. The most expressive language for querying RDF is RQL, which enables querying of semantics. In order to support RQL, a RDF storage system has to map the RDF graph model onto its storage structure. Several storage systems for RDF data have been developed, which store the RDF data as triples in a relational database. To evaluate an RQL query on those triple structures, the graph model has to be rebuilt from the triples. In this paper, we presented a new approach to store RDF data as a graph in a object-oriented database. Our approach avoids the costly rebuilding of the graph and efficiently queries the storage structure directly. The advantages of our approach have been shown by performance test on our prototype implementation OO-Store
    • 

    corecore