449 research outputs found

    Transition between process models (BPMN) and service models (WS-BPEL and other standards): A systematic review

    Get PDF
    BPMN and BPEL have become de facto standards for modeling of business processes and imple-mentation of business processes via Web services. There is a quintessential problem of discrep-ancy between these two approaches as they are applied in different phases of lifecycle and theirfundamental concepts are different — BPMN is a graph based language while BPEL is basicallya block-based programming language. This paper shows basic concepts and gives an overviewof research and ideas which emerged during last two years, presents state of the art and possiblefuture research directions. Systematic literature review was performed and critical review wasgiven regarding the potential of the given solutions

    Service architecture design for E-Businesses: A pattern-based approach

    Get PDF
    E-business involves the implementation of business processes over the Web. At a technical level, this imposes an application integration problem. In a wider sense, the integration of software and business levels across organisations becomes a significant challenge. Service architectures are an increasingly adopted architectural approach for solving Enterprise Applications Integration (EAI). The adoption of this new architectural paradigm requires adaptation or creation of novel methodologies and techniques to solve the integration problem. In this paper we present the pattern-based techniques supporting a methodological framework to design service architectures for EAI. The techniques are used for services identification, for transformation from business models to service architectures and for architecture modifications

    Towards an ontology for process monitoring and mining

    Get PDF
    Business Process Analysis (BPA) aims at monitoring, diagnosing, simulating and mining enacted processes in order to support the analysis and enhancement of process models. An effective BPA solution must provide the means for analysing existing e-businesses at three levels of abstraction: the Business Level, the Process Level and the IT Level. BPA requires semantic information that spans these layers of abstraction and which should be easily retrieved from audit trails. To cater for this, we describe the Process Mining Ontology and the Events Ontology which aim to support the analysis of enacted processes at different levels of abstraction spanning from fine grain technical details to coarse grain aspects at the Business Level

    Design of a Workflow-Based Grid Framework

    Full text link
    This paper aims to present the design of the Grid Collaborative Framework which has been proposed in one of our previous work. Grid infrastructure for resources sharing is somewhat stable with the wide acceptance of the Open Grid Services Architecture (OGSA) and Web Services Resource Framework (WSRF), but Grid framework for collaboration is far from desired. Current Grid Collaborative Frameworks (GCFs) are domain specific and lack of plan-supported capability. These limitations make them less useful and narrow in scope of application. Our grid collaborative framework aims to improve these limitations. With the theoretical foundation based on the activity theory, workflow languages, and designed on top of existing OGSA infrastructure, our proposed framework aims at accelerating the development of grid collaborative systems that consider work plans as central role

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Bridging the gap between business process models and service-oriented architectures with reference to the grid environment

    Get PDF
    In recent years, organisations have been seeking technological solutions for enacting their business process models using ad-hoc and heuristic approaches. However, limited results have been obtained due to the expansion of business processes across geographical boundaries and the absence of structured methods, frameworks and/or Information Technology (IT) infrastructures to enact these processes. In an attempt to enact business process models using distributed technologies, we introduce a novel architectural framework to bridge the gap between business process models and Grid-aware Service-Oriented Architectures (GSOA). BPMSOA framework is aligned with the Model-Driven Engineering (MDE) approach and is instantiated for role-based business process models [in particular Role Activity Diagramming (RAD)], using mobile process languages such as pi-ADL. The evaluation of the BPMSOA framework using the Submission process from the digital libraries domain has revealed that role-based business process models can be successfully enacted in GSOA environments with certain limitations. © 2011 Inderscience Enterprises Ltd

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Business process model customisation using domain-driven controlled variability management and rule generation

    Get PDF
    Business process models are abstract descriptions and as such should be applicable in different situations. In order for a single process model to be reused, we need support for configuration and customisation. Often, process objects and activities are domain-specific. We use this observation and allow domain models to drive the customisation. Process variability models, known from product line modelling and manufacturing, can control this customisation by taking into account the domain models. While activities and objects have already been studied, we investigate here the constraints that govern a process execution. In order to integrate these constraints into a process model, we use a rule-based constraints language for a workflow and process model. A modelling framework will be presented as a development approach for customised rules through a feature model. Our use case is content processing, represented by an abstract ontology-based domain model in the framework and implemented by a customisation engine. The key contribution is a conceptual definition of a domain-specific rule variability language

    STATE PROPAGATION FOR BUSINESS PROCESS MONITORING ON DIFFERENT LEVELS OF ABSTRACTION

    Get PDF
    Modeling and execution of business processes is often performed on different levels of abstraction. For example, when a business process is modeled using a high-level notation near to business such as Event-driven Process Chains (EPC), a technical refinement step is required before the process can be executed. Also, model-driven process design allows modeling a process on high-level, while executing it in a more detailed and executable low-level representation such as processes defined in the Business Process Execution Language (BPEL) or as Java code. However, current approaches for graphical monitoring of business processes are limited to scenarios in which the process that is being executed and the process that is being monitored are either one and the same or on the same level of abstraction. In this paper, we present an approach to facilitate business-oriented process monitoring while considering process design on high-level. We propose process views for business process monitoring as projections of activities and execution states in order to support business process monitoring of running process instances on different levels of abstraction. In particular, we discuss state propagation patterns which can be applied to define advanced monitoring solutions for arbitrary graph-based process languages

    Business process model customisation using domain-driven controlled variability management and rule generation

    Get PDF
    Business process models are abstract descriptions and as such should be applicable in different situations. In order for a single process model to be reused, we need support for configuration and customisation. Often, process objects and activities are domain-specific. We use this observation and allow domain models to drive the customisation. Process variability models, known from product line modelling and manufacturing, can control this customisation by taking into account the domain models. While activities and objects have already been studied, we investigate here the constraints that govern a process execution. In order to integrate these constraints into a process model, we use a rule-based constraints language for a workflow and process model. A modelling framework will be presented as a development approach for customised rules through a feature model. Our use case is content processing, represented by an abstract ontology-based domain model in the framework and implemented by a customisation engine. The key contribution is a conceptual definition of a domain-specific rule variability language
    corecore