3,679 research outputs found

    Temporal Extension of Scale Pyramid and Spatial Pyramid Matching for Action Recognition

    Full text link
    Historically, researchers in the field have spent a great deal of effort to create image representations that have scale invariance and retain spatial location information. This paper proposes to encode equivalent temporal characteristics in video representations for action recognition. To achieve temporal scale invariance, we develop a method called temporal scale pyramid (TSP). To encode temporal information, we present and compare two methods called temporal extension descriptor (TED) and temporal division pyramid (TDP) . Our purpose is to suggest solutions for matching complex actions that have large variation in velocity and appearance, which is missing from most current action representations. The experimental results on four benchmark datasets, UCF50, HMDB51, Hollywood2 and Olympic Sports, support our approach and significantly outperform state-of-the-art methods. Most noticeably, we achieve 65.0% mean accuracy and 68.2% mean average precision on the challenging HMDB51 and Hollywood2 datasets which constitutes an absolute improvement over the state-of-the-art by 7.8% and 3.9%, respectively

    Finding Faces in Cluttered Scenes using Random Labeled Graph Matching

    Get PDF
    An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    • 

    corecore