36 research outputs found

    Face recognition based on curvelets, invariant moments features and SVM

    Get PDF
    Recent studies highlighted on face recognition methods. In this paper, a new algorithm is proposed for face recognition by combining Fast Discrete Curvelet Transform (FDCvT) and Invariant Moments with Support vector machine (SVM), which improves rate of face recognition in various situations. The reason of using this approach depends on two things. first, Curvelet transform which is a multi-resolution method, that can efficiently represent image edge discontinuities; Second, the Invariant Moments analysis which is a statistical method that meets with the translation, rotation and scale invariance in the image. Furthermore, SVM is employed to classify the face image based on the extracted features. This process is applied on each of ORL and Yale databases to evaluate the performance of the suggested method. Experimentally, the proposed method results show that our system can compose efficient and reasonable face recognition feature, and obtain useful recognition accuracy, which is able to face and side-face states detection of persons to decrease fault rate of production

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    An integrated formulation of zernike invariant for mining insect images

    Get PDF
    This paper presents mathematical integration of Zernike Moments and United Moment Invariant for extracting printed insect images.These features are further mining for granular information by investigating the variance of Interclass and intra-class. The results reveal that the proposed integrated formulation yield better analysis compared to convectional Zernike moments and United Moment Invariant

    3D Object Recognition Using Fast Overlapped Block Processing Technique

    Get PDF
    Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments
    corecore