3,917 research outputs found

    Pose-invariant, model-based object recognition, using linear combination of views and Bayesian statistics

    Get PDF
    This thesis presents an in-depth study on the problem of object recognition, and in particular the detection of 3-D objects in 2-D intensity images which may be viewed from a variety of angles. A solution to this problem remains elusive to this day, since it involves dealing with variations in geometry, photometry and viewing angle, noise, occlusions and incomplete data. This work restricts its scope to a particular kind of extrinsic variation; variation of the image due to changes in the viewpoint from which the object is seen. A technique is proposed and developed to address this problem, which falls into the category of view-based approaches, that is, a method in which an object is represented as a collection of a small number of 2-D views, as opposed to a generation of a full 3-D model. This technique is based on the theoretical observation that the geometry of the set of possible images of an object undergoing 3-D rigid transformations and scaling may, under most imaging conditions, be represented by a linear combination of a small number of 2-D views of that object. It is therefore possible to synthesise a novel image of an object given at least two existing and dissimilar views of the object, and a set of linear coefficients that determine how these views are to be combined in order to synthesise the new image. The method works in conjunction with a powerful optimization algorithm, to search and recover the optimal linear combination coefficients that will synthesize a novel image, which is as similar as possible to the target, scene view. If the similarity between the synthesized and the target images is above some threshold, then an object is determined to be present in the scene and its location and pose are defined, in part, by the coefficients. The key benefits of using this technique is that because it works directly with pixel values, it avoids the need for problematic, low-level feature extraction and solution of the correspondence problem. As a result, a linear combination of views (LCV) model is easy to construct and use, since it only requires a small number of stored, 2-D views of the object in question, and the selection of a few landmark points on the object, the process which is easily carried out during the offline, model building stage. In addition, this method is general enough to be applied across a variety of recognition problems and different types of objects. The development and application of this method is initially explored looking at two-dimensional problems, and then extending the same principles to 3-D. Additionally, the method is evaluated across synthetic and real-image datasets, containing variations in the objects’ identity and pose. Future work on possible extensions to incorporate a foreground/background model and lighting variations of the pixels are examined

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    Abstracts of the 2014 Brains, Minds, and Machines Summer School

    Get PDF
    A compilation of abstracts from the student projects of the 2014 Brains, Minds, and Machines Summer School, held at Woods Hole Marine Biological Lab, May 29 - June 12, 2014.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Robust real-time tracking in smart camera networks

    Get PDF
    corecore