145 research outputs found

    Castell: a heterogeneous cmp architecture scalable to hundreds of processors

    Get PDF
    Technology improvements and power constrains have taken multicore architectures to dominate microprocessor designs over uniprocessors. At the same time, accelerator based architectures have shown that heterogeneous multicores are very efficient and can provide high throughput for parallel applications, but with a high-programming effort. We propose Castell a scalable chip multiprocessor architecture that can be programmed as uniprocessors, and provides the high throughput of accelerator-based architectures. Castell relies on task-based programming models that simplify software development. These models use a runtime system that dynamically finds, schedules, and adds hardware-specific features to parallel tasks. One of these features is DMA transfers to overlap computation and data movement, which is known as double buffering. This feature allows applications on Castell to tolerate large memory latencies and lets us design the memory system focusing on memory bandwidth. In addition to provide programmability and the design of the memory system, we have used a hierarchical NoC and added a synchronization module. The NoC design distributes memory traffic efficiently to allow the architecture to scale. The synchronization module is a consequence of the large performance degradation of application for large synchronization latencies. Castell is mainly an architecture framework that enables the definition of domain-specific implementations, fine-tuned to a particular problem or application. So far, Castell has been successfully used to propose heterogeneous multicore architectures for scientific kernels, video decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW). It has also been used to explore a number of architecture optimizations such as enhanced DMA controllers, and architecture support for task-based programming models. ii

    Performance Debugging and Tuning using an Instruction-Set Simulator

    Get PDF
    Instruction-set simulators allow programmers a detailed level of insight into, and control over, the execution of a program, including parallel programs and operating systems. In principle, instruction set simulation can model any target computer and gather any statistic. Furthermore, such simulators are usually portable, independent of compiler tools, and deterministic-allowing bugs to be recreated or measurements repeated. Though often viewed as being too slow for use as a general programming tool, in the last several years their performance has improved considerably. We describe SIMICS, an instruction set simulator of SPARC-based multiprocessors developed at SICS, in its rôle as a general programming tool. We discuss some of the benefits of using a tool such as SIMICS to support various tasks in software engineering, including debugging, testing, analysis, and performance tuning. We present in some detail two test cases, where we've used SimICS to support analysis and performance tuning of two applications, Penny and EQNTOTT. This work resulted in improved parallelism in, and understanding of, Penny, as well as a performance improvement for EQNTOTT of over a magnitude. We also present some early work on analyzing SPARC/Linux, demonstrating the ability of tools like SimICS to analyze operating systems

    Fast thread communication and synchronization mechanisms for a scalable single chip multiprocessor

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 159-163).by Stephen William Keckler.Ph.D

    Performance analysis and tuning in multicore environments

    Get PDF
    Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application.Análisis de rendimiento es el área de estudio encargada de monitorizar el comportamiento de la ejecución de programas informáticos. El principal objetivo es encontrar los posibles ajustes que serán necesarios para mejorar el rendimiento. Para poder obtener esa mejora es necesario encontrar las principales causas de overhead. Actualmente estamos sumergidos en la era multicore, pero existe una brecha entre el nivel de desarrollo de sus dos principales divisiones (hardware y software). Cuando hablamos de multicore también estamos hablando de sistemas de memoria compartida. Nosotros damos un paso más al abordar el análisis de rendimiento a otro nivel por medio del estudio de la estructura de las aplicaciones y sus patrones. También presentamos herramientas de análisis de aplicaciones que son específicas para el análisis de rendimiento de aplicaciones paralelas desarrolladas con OpenMP. Al final presentamos los resultados de algunos experimentos realizados con un grupo de aplicaciones científicas desarrolladas bajo este modelo de programación.L'Anàlisi de rendiment és l'àrea d'estudi encarregada de monitorar el comportament de l'execució de programes informàtics. El principal objectiu és trobar els possibles ajustaments que seran necessaris per a millorar el rendiment. Per a poder obtenir aquesta millora és necessari trobar les principals causes de l'overhead (excessos de computació no productiva). Actualment estem immersos en l'era multicore, però existeix una rasa entre el nivell de desenvolupament de les seves dues principals divisions (maquinari i programari). Quan parlam de multicore, també estem parlant de sistemes de memòria compartida. Nosaltres donem un pas més per a abordar l'anàlisi de rendiment en un altre nivell per mitjà de l'estudi de l'estructura de les aplicacions i els seus patrons. També presentem eines d'anàlisis d'aplicacions que són específiques per a l'anàlisi de rendiment d'aplicacions paral·leles desenvolupades amb OpenMP. Al final, presentem els resultats d'alguns experiments realitzats amb un grup d'aplicacions científiques desenvolupades sota aquest model de programació

    Data placement in HPC architectures with heterogeneous off-chip memory

    Get PDF
    The performance of HPC applications is often bounded by the underlying memory system's performance. The trend of increasing the number of cores on a chip imposes even higher memory bandwidth and capacity requirements. The limitations of traditional memory technologies are pushing research in the direction of hybrid memory systems that, besides DRAM, include one or more modules based on some of the higher-density non-volatile memory technologies, where one of them will provide the required bandwidth, while the other will provide the required capacity for the application. This creates many challenges with data placement and migration policies between the modules of such hybrid memory system. In this paper, we propose an architecture with a hybrid memory design that places two technologically different memory modules in a flat address space. On such system, we evaluate several HPC workloads against different data placement and migration policies, compare their performance by means of execution time and the number of non-volatile memory writes, and consider how it can be applied to the future HPC architectures. Our results show that the hybrid memory system with dynamic page migration and limited DRAM capacity, can achieve performance that is comparable to a hypothetical, hard to implement, DRAM-only system.Postprint (published version

    An inter-cluster communication facility for lightweight manycore processors in the Nanvix OS

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Ciências da Computação.Em conjunto com a maior escalabilidade e eficiência energética, os processadores lightweight manycores trouxeram um novo conjunto de desafios no desenvolvimento de software provenientes de suas particularidades arquiteturais. Neste contexto, sistemas operacionais tornam o desenvolvimento de aplicações menos onerosos, menos suscetíveis a erros e mais eficientes. A camada de abstração provida pelos sistemas operacionais suprime as características do hardware sob uma perspectiva simplificada e eficaz. No entanto, parte dos desafios de desenvolvimento encontrados em lightweight manycores deriva diretamente de runtimes e sistemas operacionais existentes, que não lidam completamente com a complexidade arquitetural desses processadores. Acreditamos que sistemas operacionais para a próxima geração de lightweight manycores necessitam ser repensados a partir de seus conceitos básicos considerando as severas restrições arquiteturais. Em particular, as abstrações de comunicação desempenham um papel crucial na escalabilidade e desempenho das aplicações devido à natureza distribuída dos manycores. O objetivo deste trabalho é propor mecanismos de comunicação entre clusters para o processador manycore emergente MPPA-256. Estes mecanismos fazem parte de uma Camada de Abstração de Hardware (HAL) genérica e flexível para lightweight manycores que lida diretamente com os principais problemas encontrados no projeto de um sistema operacional para esses processadores. Sob estes mecanismos, serviços de comunicação também serão propostos para um sistema operacional baseado no modelo microkernel, que busca fornecer um esqueleto básico para as abstrações de comunicação. As contribuições deste trabalho estão inseridas em um contexto de pesquisa mais amplo, que procura investigar a criação de um sistema operacional distribuído baseado em uma abordagem multikernel, denominado Nanvix OS. O Nanvix OS se concentrará em questões de programabilidade e portabilidade através de um sistema operacional compatível com o padrão POSIX para lightweight manycore. Os resultados mostram como algoritmos distribuídos conhecidos podem ser eficientemente suportados pelo Nanvix OS e incentivam melhorias providas pelo uso adequado dos aceleradores de Acesso Direto à Memória (DMA).Jointly with further scalability and energy efficiency, lightweight manycores brought a new set of challenges in software development coming from their architectural particularities. In this context, Operating Systems (OSs) make application development less costly, less error-prone, and more efficient. The abstraction layer provided by OSs suppresses hardware characteristics from a simplified and productive perspective. However, part of the development challenges encountered in lightweight manycores stems from the existing runtimes and OSs, which do not entirely address the complexity of these processors. We believe that OSs for the next generation of lightweight manycores must be redesigned from scratch to cope with their tight architectural constraints. In particular, communication abstractions play a crucial role in application scalability and performance due to the distributed nature of manycores. The purpose of this undergraduate dissertation is to propose an inter-cluster communication facility for the emerging manycore MPPA-256 processor. This facility is part of a generic and flexible Hardware Abstraction Layer (HAL) that deals directly with the key issues encountered in designing an OS for these processors. Above this facility, communication services will also be proposed for an OS based on the microkernel model, which seeks to provide a basic framework for communication abstractions. The contributions of this undergraduate dissertation are embedded in a broader research context that aims to investigate the creation of a distributed OS based on a multikernel approach, called Nanvix OS. Nanvix OS focuses on programmability and portability issues for manycores through a POSIX-compliant OS. The results present how well known distributed algorithms can be efficiently supported by Nanvix OS and encourage improvements provided by the proper use of Direct memory access (DMA) accelerators
    corecore