666 research outputs found

    CFSIM: A concurrent compiled-code functional simulator for hopCP

    Get PDF
    Journal ArticleControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Representation of synchronous, asynchronous, and polychronous components by clocked guarded actions

    Get PDF
    International audienceFor the design of embedded systems, many languages are in use, which are based on different models of computation such as event-, data-, and clock-driven paradigms as well as paradigms without a clear notion of time. Systems composed of such heterogeneous components are hard to analyze so that mainly co-simulation by coupling different simulators has been considered so-far. In this article, we propose clocked guarded actions as a unique intermediate representation that can be used as a common basis for simulation, analysis, and synthesis. We show how synchronous, (untimed) asynchronous, and polychronous languages can be translated to clocked guarded actions to demonstrate that our intermediate representation is powerful enough to capture rather different models of computation. Having a unique and composable intermediate representation of these components at hand allows one a simple composition of these components. Moreover, we show how clocked guarded actions can be used for verification by symbolic model checking and simulation by SystemC

    Grouping complex systems for classification and parallel simulation

    Get PDF
    This thesis is concerned with grouping complex systems by means of concurrent model, in order to aid in (i) formulation of classifications and (ii) induction of parallel simulation programs. It observes, and seeks f~ furmalize _ and then exploit, the strong structural resemblance between complex systems and occam programs. The thesis hypothesizes that groups of complex systems may be discriminated according to shared structural and behavioural characteristics. Such an analysis of the complex systems domain may be performed in the abstract with the aid of a model for capturing interesting features of complex systems. The resulting groups would form a classification of complex systems. An additional hypothesis is that, insofar as the model is able to capture sufficient . programmatic information, these groups may be used to define, automatically, algorithmic skeletons for the concurrent simulation of complex systems. In order to test these hypotheses, a specification model and an accompanying formal notation are developed. The model expresses properties of complex systems in a mixture of object-oriented and process-oriented styles .. The model is then used as the basis for performing both classification and automatic induction of parallel simulation programs. The thesis takes the view that specification models should not be overly complex, especially if the specifications are meant to be executable. Therefore the requirement for explicit consideration of concurrency on the part of specifiers is minimized. The thesis formulates specifications of classes of cellular automata and neural networks according to the proposed model. Procedures for verificati6If - and induction of parallel simulation programs are also included

    Formal semantics for LIPS (Language for Implementing Parallel/distributed Systems)

    Get PDF
    This thesis presents operational semantics and an abstract machine for a point-to-point asynchronous message passing language called LIPS (Language for Implementing Parallel/ distributed Systems). One of the distinctive features of LIPS is its capability to handle computation and communication independently. Taking advantage of this capability, a two steps strategy has been adopted to define the operational semantics. The two steps are as follows: • A big-step semantics with single-step re-writes is used to relate the expressions and their evaluated results (computational part of LIPS). • The developed big-step semantics has been extended with Structural Operational Semantics (SOS) to describe the asynchronous message passing of LIPS (communication part of LIPS). The communication in LIPS has been implemented using Asynchronous Message Passing System (AMPS). It makes use of very simple data structures and avoids the use of buffers. While operational semantics is used to specify the meaning of programs, abstract machines are used to provide intermediate representation of the language's implementation. LIPS Abstract Machine (LAM) is defined to execute LIPS programs. The correctness of the execution of the LIPS program/expression written using the operational semantics is verified by comparing it with its equivalent code generated using the abstract machine. Specification of Asynchronous Communicating Systems (SACS) is a process algebra developed to specify the communication in LIPS programs. It is an asynchronous variant of Synchronous Calculus of Communicating Systems (SCCS). This research presents the SOS for SACS and looks at the bisimulation equivalence properties for SACS which can be used to verify the behaviour of a specified process. An implementation is said to be complete when it is equivalent to its specifications. SACS has been used for the high level specification of the communication part of LIPS programs and is implemented using AMPS. This research proves that SACS and AMPS are equivalent by defining a weak bisimulation equivalence relation between the SOS of both SACS and AMPS

    A VISUAL DESIGN METHOD AND ITS APPLICATION TO HIGH RELIABILITY HYPERMEDIA SYSTEMS

    Get PDF
    This work addresses the problem of the production of hypermedia documentation for applications that require high reliability, particularly technical documentation in safety critical industries. One requirement of this application area is for the availability of a task-based organisation, which can guide and monitor such activities as maintenance and repair. In safety critical applications there must be some guarantee that such sequences are correctly presented. Conventional structuring and design methods for hypermedia systems do not allow such guarantees to be made. A formal design method that is based on a process algebra is proposed as a solution to this problem. Design methods of this kind need to be accessible to information designers. This is achieved by use of a technique already familiar to them: the storyboard. By development of a storyboard notation that is syntactically equivalent to a process algebra a bridge is made between information design and computer science, allowing formal analysis and refinement of the specification drafted by information designers. Process algebras produce imperative structures that do not map easily into the declarative formats used for some hypermedia systems, but can be translated into concurrent programs. This translation process, into a language developed by the author, called ClassiC, is illustrated and the properties that make ClassiC a suitable implementation target discussed. Other possible implementation targets are evaluated, and a comparative illustration given of translation into another likely target, Java

    Synthesis from multi-paradigm specifications

    Get PDF
    This work proposes a language for describing reactive synthesis problems that integrates imperative and declarative elements. The semantics is defined in terms of two-player turn-based infinite games with full information. Currently, synthesis tools accept linear temporal logic (LTL) as input, but this description is less structured and does not facilitate the expression of sequential constraints. This motivates the use of a structured programming language to specify synthesis problems. Transition systems and guarded commands serve as imperative constructs, expressed in a syntax based on that of the modeling language Promela. The syntax allows defining which player controls data and control flow, and separating a program into assumptions and guarantees. These notions are necessary for input to game solvers. The integration of imperative and declarative paradigms allows using the paradigm that is most appropriate for expressing each requirement. The declarative part is expressed in the LTL fragment of generalized reactivity(1), which admits efficient synthesis algorithms. The implementation translates Promela to input for the Slugs synthesizer and is written in Python
    • …
    corecore