5,856 research outputs found

    Translating Neuralese

    Full text link
    Several approaches have recently been proposed for learning decentralized deep multiagent policies that coordinate via a differentiable communication channel. While these policies are effective for many tasks, interpretation of their induced communication strategies has remained a challenge. Here we propose to interpret agents' messages by translating them. Unlike in typical machine translation problems, we have no parallel data to learn from. Instead we develop a translation model based on the insight that agent messages and natural language strings mean the same thing if they induce the same belief about the world in a listener. We present theoretical guarantees and empirical evidence that our approach preserves both the semantics and pragmatics of messages by ensuring that players communicating through a translation layer do not suffer a substantial loss in reward relative to players with a common language.Comment: Fixes typos and cleans ups some model presentation detail

    Using humanoid robots to study human behavior

    Get PDF
    Our understanding of human behavior advances as our humanoid robotics work progresses-and vice versa. This team's work focuses on trajectory formation and planning, learning from demonstration, oculomotor control and interactive behaviors. They are programming robotic behavior based on how we humans “program” behavior in-or train-each other

    Low-cost, multi-agent systems for planetary surface exploration

    Get PDF
    The use of off-the-shelf consumer electronics combined with top-down design methodologies have made small and inexpensive satellites, such as CubeSats, emerge as viable, low-cost and attractive space-based platforms that enable a range of new and exciting mission scenarios. In addition, to overcome some of the resource limitation issues encountered with these platforms, distributed architectures have emerged to enable complex tasks through the use of multiple low complexity units. The low-cost characteristics of such systems coupled with the distributed architecture allows for an increase in the size of the system beyond what would have been feasible with a monolithic system, hence widening the operational capabilities without significantly increasing the control complexity of the system. These ideas are not new for Earth orbiting devices, but excluding some distributed remote sensing architectures they are yet to be applied for the purpose of planetary exploration. Experience gained through large rovers demonstrates the value of in-situ exploration, which is however limited by the associated high-cost and risk. The loss of a rover can and has happened because of a number of possible failures: besides the hazards directly linked to the launch and journey to the target-body, hard landing and malfunctioning of parts are all threats to the success of the mission. To overcome these issues this paper introduces the concept of using off-the-shelf consumer electronics to deploy a low-cost multi-rover system for future planetary surface exploration. It is shown that such a system would significantly reduce the programmatic-risk of the mission (for example catastrophic failure of a single rover), while exploiting the inherent advantages of cooperative behaviour. These advantages are analysed with a particular emphasis put upon the guidance, navigation and control of such architectures using the method of artificial potential field. Laboratory tests on multi-agent robotic systems support the analysis. Principal features of the system are identified and the underlying advantages over a monolithic single-agent system highlighted

    On Partially Controlled Multi-Agent Systems

    Full text link
    Motivated by the control theoretic distinction between controllable and uncontrollable events, we distinguish between two types of agents within a multi-agent system: controllable agents, which are directly controlled by the system's designer, and uncontrollable agents, which are not under the designer's direct control. We refer to such systems as partially controlled multi-agent systems, and we investigate how one might influence the behavior of the uncontrolled agents through appropriate design of the controlled agents. In particular, we wish to understand which problems are naturally described in these terms, what methods can be applied to influence the uncontrollable agents, the effectiveness of such methods, and whether similar methods work across different domains. Using a game-theoretic framework, this paper studies the design of partially controlled multi-agent systems in two contexts: in one context, the uncontrollable agents are expected utility maximizers, while in the other they are reinforcement learners. We suggest different techniques for controlling agents' behavior in each domain, assess their success, and examine their relationship.Comment: See http://www.jair.org/ for any accompanying file

    Robot Mindreading and the Problem of Trust

    Get PDF
    This paper raises three questions regarding the attribution of beliefs, desires, and intentions to robots. The first one is whether humans in fact engage in robot mindreading. If they do, this raises a second question: does robot mindreading foster trust towards robots? Both of these questions are empirical, and I show that the available evidence is insufficient to answer them. Now, if we assume that the answer to both questions is affirmative, a third and more important question arises: should developers and engineers promote robot mindreading in view of their stated goal of enhancing transparency? My worry here is that by attempting to make robots more mind-readable, they are abandoning the project of understanding automatic decision processes. Features that enhance mind-readability are prone to make the factors that determine automatic decisions even more opaque than they already are. And current strategies to eliminate opacity do not enhance mind-readability. The last part of the paper discusses different ways to analyze this apparent trade-off and suggests that a possible solution must adopt tolerable degrees of opacity that depend on pragmatic factors connected to the level of trust required for the intended uses of the robot
    corecore