283 research outputs found

    Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy

    Full text link
    Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence MRI based diagnosis is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissue. Analysing white matter structures of 32 subjects we incorporated our findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis

    Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients

    Get PDF
    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To understand the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity.Comment: http://journal.frontiersin.org/article/10.3389/fncom.2017.00025/ful

    Experimental treatment options in absence epilepsy

    Get PDF
    Contains fulltext : 182124.pdf (preprint version ) (Open Access)Background: The benign character of absence epilepsy compared to other genetic generalized epilepsy syndromes has often hampered the search for new treatment options. Absence epilepsy is most often treated with ethosuximide or valproic acid. However, both drugs are not always well tolerated or fail, and seizure freedom for a larger proportion of patients remains to be achieved. The availability of genuine animal models of epilepsy does allow to search for new treatment options not only for absence epilepsy perse but also for other genetic - previously called idiopathic - forms of epilepsy. The recent discovery of a highly excitable cortical zone in these models is considered as a new therapeutic target area. Methods: Here, we provide an overview regarding the search for new therapeutical options as has been investigated in the genetic rodent models (mainly WAG/Rij and GAERS) including drugs and whether antiepileptogenesis can be achieved, various types of electrical and optogenetical invasive stimulations, different types of non-invasive stimulation and finally whether absence seizures can be predicted and prevented. Results: Many factors determine either the cortical and or thalamic excitability or the interaction between cortex and thalamus and offer new possibilities for new anti-absence drugs, among others metabotropic glutamatergic positive and negative allosteric modulators. The inhibition of epileptogenesis by various drugs with its widespread consequences seems feasible, although its mechanisms remain obscure and seems different from the anti-absence action. Surgical intervention on the cortical zone initiating seizures, either with radiosurgery using synchrotron-generated microbeams, or ablation techniques might reduce spike-and-wave discharges in the rodent models. High frequency electrical subcortical or cortical stimulation might be a good way to abort ongoing spike-and-wave discharges. In addition, possibilities for prevention with real-time EEG analyses in combination with electrical stimulation could also be a way to fully control these seizures. Conclusion: Although it is obvious that some of these treatment possibilities will not be used for absence epilepsy and/or need to be further developed, all can be considered as proof of principle and provide clear directives for further developments

    Metabifurcation analysis of a mean field model of the cortex

    Full text link
    Mean field models (MFMs) of cortical tissue incorporate salient features of neural masses to model activity at the population level. One of the common aspects of MFM descriptions is the presence of a high dimensional parameter space capturing neurobiological attributes relevant to brain dynamics. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two families. After investigating and characterizing these, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli, distribution of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They emerge when the parameter space is partitioned according to bifurcation responses. This partitioning cannot be achieved by the investigation of only a small number of parameter sets, but is the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces
    • …
    corecore