1,394 research outputs found

    Learning tree structures from leaves for particle decay reconstruction

    Get PDF
    In this work, we present a neural approach to reconstructing rooted tree graphs describing hierarchical interactions, using a novel representation we term the lowest common ancestor generations (LCAG) matrix. This compact formulation is equivalent to the adjacency matrix, but enables learning a tree\u27s structure from its leaves alone without the prior assumptions required if using the adjacency matrix directly. Employing the LCAG therefore enables the first end-to-end trainable solution which learns the hierarchical structure of varying tree sizes directly, using only the terminal tree leaves to do so. In the case of high-energy particle physics, a particle decay forms a hierarchical tree structure of which only the final products can be observed experimentally, and the large combinatorial space of possible trees makes an analytic solution intractable. We demonstrate the use of the LCAG as a target in the task of predicting simulated particle physics decay structures using both a Transformer encoder and a neural relational inference encoder graph neural network. With this approach, we are able to correctly predict the LCAG purely from leaf features for a maximum tree-depth of 8 in 92.5% of cases for trees up to 6 leaves (including) and 59.7% for trees up to 10 in our simulated dataset

    Incorporating Graph Information in Transformer-based AMR Parsing

    Full text link
    Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at \url{http://www.github.com/sapienzanlp/LeakDistill}.Comment: ACL 2023. Please cite authors correctly using both lastnames ("Mart\'inez Lorenzo", "Huguet Cabot"
    • …
    corecore