20,140 research outputs found

    Statistical Learning and Prosodic Bootstrapping Differentially Affect Neural Synchronization during Speech Segmentation

    Get PDF
    Neural oscillations constitute an intrinsic property of functional brain organization that facilitates the tracking of linguistic units at multiple time scales through brain-to-stimulus alignment. This ubiquitous neural principle has been shown to facilitate speech segmentation and word learning based on statistical regularities. However, there is no common agreement yet on whether speech segmentation is mediated by a transition of neural synchronization from syllable to word rate, or whether the two time scales are concurrently tracked. Furthermore, it is currently unknown whether syllable transition probability contributes to speech segmentation when lexical stress cues can be directly used to extract word forms. Using inter-trial coherence (ITC) analyses in combinations with Event-Related Potentials (ERPs), we showed that speech segmentation based on both statistical regularities and lexical stress cues was accompanied by concurrent neural synchronization to syllables and words. In particular, ITC at the word rate was generally higher in structured compared to random sequences, and this effect was particularly pronounced in the flat condition. Furthermore, ITC at the syllable rate dynamically increased across the blocks of the flat condition, whereas a similar modulation was not observed in the stressed condition. Notably, in the flat condition ITC at both time scales correlated with each other, and changes in neural synchronization were accompanied by a rapid reconfiguration of the P200 and N400 components with a close relationship between ITC and ERPs. These results highlight distinct computational principles governing neural synchronization to pertinent linguistic units while segmenting speech under different listening conditions

    Neural Word Segmentation with Rich Pretraining

    Full text link
    Neural word segmentation research has benefited from large-scale raw texts by leveraging them for pretraining character and word embeddings. On the other hand, statistical segmentation research has exploited richer sources of external information, such as punctuation, automatic segmentation and POS. We investigate the effectiveness of a range of external training sources for neural word segmentation by building a modular segmentation model, pretraining the most important submodule using rich external sources. Results show that such pretraining significantly improves the model, leading to accuracies competitive to the best methods on six benchmarks.Comment: Accepted by ACL 201

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    Fast and Accurate Neural Word Segmentation for Chinese

    Full text link
    Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-to-end, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.Comment: To appear in ACL201
    • …
    corecore