2,142 research outputs found

    Energy Efficient Encoding Methods For Chip-to-Chip Communication

    Get PDF

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Power-efficient memory bus encoding using stride-based stream reconstruction

    Get PDF
    With the rapid increase in the complexity of chips and the popularity of portable devices, the performance demand is not any more the only important constraint in the embedded system. In stead, energy consumption has become one of the main design issues for contemporary embedded systems, especially for I/O interface due to the high capacitance of bus transition. In this paper, we propose a bus encoding scheme, which may reduce transitions by reconstructing active address streams with variable cached strides. The key idea is to obtain the variable strides for dierent sets of active addressing streams such that the decoder reconstructs these interlaced streams with these strides. Instead of sending the full address, the encoder may only send partial ad- dress or stride by using either one-hot or binary-inversion encoding. To exploit the locality and dynamically adjust the value of stride of active address streams, we partially compare the previous addresses of existing streams with the current address. Hence, the data transmitted on the bus can be minimally encoded. Experiments with several MediaBench benchmarks show that the scheme can achieve an average of 60% reduction in bus switching activity.Facultad de Informátic

    Value-Deviation-Bounded Serial Data Encoding for Energy-Efficient Approximate Communication

    Get PDF
    Transferring data between ICs accounts for a growing proportion of system power in wearable and mobile systems. Reducing signal transitions reduces the dynamic power dissipated in this data transfer, but traditional approaches cannot be applied when the transfer interfaces are serial buses. To address this challenge, we present a family of optimal value-deviation-bounded approximate serial encoders (VDBS encoders) that significantly reduce signal transitions (and hence, dynamic power) for bit-serial communication interfaces. When the data in transfer are from sensors, VDBS encoding enables a tradeoff between power efficiency and application fidelity, by exploiting the tolerance of many of the typical algorithms consuming sensor data to deviations in values. We derive analytic formulations for the family of VDBS encoders and introduce an efficient algorithm that performs close to the Pareto-optimal encoders. We evaluate the algorithm in two applications: Encoding data between a camera and processor in a text-recognition system, and between an accelerometer and processor in a pedometer system. For the text recognizer, the algorithm reduces signal transitions by 55% on average, while maintaining OCR accuracy at over 90% for previously-correctly-recognized text. For the pedometer, the algorithm reduces signal transitions by an average of 54% in exchange for step count errors of under 5%

    Trends in hardware architecture for mobile devices

    Get PDF
    In the last ten years, two main factors have fueled the steady growth in sales of mobile computing and communication devices: a) the reduction of the footprint of the devices themselves, such as cellular handsets and small computers; and b) the success in developing low-power hardware which allows the devices to operate autonomously for hours or even days. In this review, I show that the first generation of mobile devices was DSP centric – that is, its architecture was based in fast processing of digitized signals using low- power, yet numerically powerful DSPs. However, the next generation of mobile devices will be built around DSPs and low power microprocessor cores for general processing applications. Mobile devices will become data-centric. The main challenge for designers of such hybrid architectures is to increase the computational performance of the computing unit, while keeping power constant, or even reducing it. This report shows that low-power mobile hardware architectures design goes hand in hand with advances in compiling techniques. We look at the synergy between hardware and software, and show that a good balance between both can lead to innovative lowpower processor architectures

    Low power JPEG2000 5/3 discrete wavelet transform algorithm and architecture

    Get PDF

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Error-efficient computing systems

    Get PDF
    This survey explores the theory and practice of techniques to make computing systems faster or more energy-efficient by allowing them to make controlled errors. In the same way that systems which only use as much energy as necessary are referred to as being energy-efficient, you can think of the class of systems addressed by this survey as being error-efficient: They only prevent as many errors as they need to. The definition of what constitutes an error varies across the parts of a system. And the errors which are acceptable depend on the application at hand. In computing systems, making errors, when behaving correctly would be too expensive, can conserve resources. The resources conserved may be time: By making some errors, systems may be faster. The resource may also be energy: A system may use less power from its batteries or from the electrical grid by only avoiding certain errors while tolerating benign errors that are associated with reduced power consumption. The resource in question may be an even more abstract quantity such as consistency of ordering of the outputs of a system. This survey is for anyone interested in an end-to-end view of one set of techniques that address the theory and practice of making computing systems more efficient by trading errors for improved efficiency

    State of the art survey of technologies applicable to NASA's aeronautics, avionics and controls program

    Get PDF
    The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities
    • …
    corecore