28 research outputs found

    Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials

    Get PDF
    The large diversity of applications in our daily lives that rely on photodetection technology requires photodetectors with distinct properties. The choice of an adequate photodetecting system depends on its application, where aspects such as spectral selectivity, speed, and sensitivity play a critical role. High-sensitivity photodetection covering a large spectral range from the UV to IR is dominated by photodiodes. To overcome existing limitations in sensitivity and cost of state-of-the-art systems, new device architectures and material systems are needed with low-cost fabrication and high performance. Low-dimensional nanomaterials (0D, 1D, 2D) are promising candidates with many unique electrical and optical properties and additional functionalities such as flexibility and transparency. In this Perspective, the physical mechanism of photo-FETs (field-effect transistors) is described and recent advances in the field of low-dimensional photo-FETs and hybrids thereof are discussed. Several requirements for the channel material are addressed in view of the photon absorption and carrier transport process, and a fundamental trade-off between them is pointed out for single-material-based devices. We further clarify how hybrid devices, consisting of an ultrathin channel sensitized with strongly absorbing semiconductors, can circumvent these limitations and lead to a new generation of highly sensitive photodetectors. Recent advances in the development of sensitized low-dimensional photo-FETs are discussed, and several promising future directions for their application in high-sensitivity photodetection are proposed.Peer ReviewedPostprint (author's final draft

    Graphene against Other Two‐Dimensional Materials: A Comparative Study on the Basis of Electronic Applications

    Get PDF
    The evolution of the electronics industry since almost 75 years ago has depended on the novel materials and devices that continuously are introduced. In first decades of this century, 2D materials are impelling this development through materials such as graphene, graphane, graphone, graphyne, graphdiyne, silicene, silicane, germanene, germanane, stanene, phosphorene, arsenene, antimonene, borophene, hexagonal boron nitride (hBN), transition metal dichalcogenides (TMDs), and MXenes. In this work, the main strategies to modify electrical properties of 2D materials are studied for obtaining dielectric, semiconducting, or semimetallic properties. The effects of doping, chemical modification, electrical field, or compressive and/or tensile strains are considered. In addition, the light‐matter interaction to develop optoelectronic applications is analyzed. In next three decades, a lot of scientific research will be realized to completely exploit the use of 2D materials either as single monolayers or as stacked multilayers in several fields of knowledge with a special emphasis on the benefit to the electronic industry and ultimately our society

    Substrate Effects And Dielectric Integration In 2d Electronics

    Get PDF
    The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified by octadecyltrimethoxysilane (OTMS) self-assembled monolayer (SAMs), and hexagonal boron nitride (h-BN). We performed variable temperature transport measurements to understand the effects of various scattering mechanisms such as remote surface phonon scattering, coulomb scattering, surface roughness scattering on the mobility of these devices. To reveal the intrinsic channel properties, we also investigated TMD devices encapsulated by h-BN. To further optimize the dielectric interface and electrostatic control of the TMD channels, we developed a novel thermal-oxidation method to turn few-layer 2D metals into ultrathin and atomically flat high –κ dielectrics. In order to optimize the performance of TMD electronic devices, it is also critical to fabricate low resistance ohmic contacts required for effectively injecting charge carriers into the TMD channel. Along this direction, we developed a new contact strategy to minimize the contact resistance for a variety of TMDs by van der Waals assembly of doped TMDs as contacts and undoped TMDs as channel materials. The developed unique method for low-resistance ohmic contacts achieved using the 2D/2D contact strategy and novel technique for high-k dielectric integration is expected to open the path to explore the rich quantum physics in TMDs 2DEGs and 2DHGs

    High Mobility N-Type Field Effect Transistors Enabled By Wse2/pdse2 Heterojunctions

    Get PDF
    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDs) have emerged as a promising candidate for post-silicon electronics. Few-layer tungsten diselenide (WSe2), a well-studied TMD, has sown high hole mobility and ON/OFF ratio in field effect transistor (FET) devices. But the n-type performance of WSe2 is still quite limited by the presence of a substantial Schottky Barrier. Palladium diselenide, (PdSe2) is a newly discovered TMD that is of interest because of its high electron mobility, and moderate ON/OFF ratios. However, despite its relatively small bandgap, the n-type performance of few-layer PdSe2 FETs has also been limited by a Schottky barrier, which is likely due to Fermi-level pinning. In this work, we report high performance n-type FETs enabled by a few-layer WSe2/PdSe2 heterojunction. We show that the current through few-layer WSe2 or PdSe2 alone is quite small, but across the heterojunction WSe2 serves as a “buffer layer” at the drain/source contacts for few-layer PdSe2 FETs. We observe a high ON/OFF ratio of 105, with an electron mobility of ~139 cm2 V-1 s-1. The mobility continues to rise at cryogenic temperatures, indicating a substantial reduction in the Schottky Barrier height. A heterojunction consisting of 3-layer PdSe2 and 3L WSe2 showed an ON/OFF ratio approaching 107, while still maintaining a moderate mobility of ~ 57 cm2 V-1 s-1. We believe the significantly improved device performance enabled by our contact engineering technique will facilitate further study of the intrinsic properties of few-layer 2D materials

    Physics-Based Modeling and Validation of 2D Schottky Barrier Field-Effect Transistors

    Full text link
    In this work, we describe the charge transport in two-dimensional (2D) Schottky barrier field-effect transistors (SB-FETs) based on the carrier injection at the Schottky contacts. We first develop a numerical model for thermionic and field-emission processes of carrier injection that occur at a Schottky contact. The numerical model is then simplified to yield an analytic equation for current versus voltage (II-VV) in the SB-FET. The lateral electric field at the junction, controlling the carrier injection, is obtained by accurately modeling the electrostatics and the tunneling barrier width. Unlike previous SB-FET models that are valid for near-equilibrium conditions, this model is applicable for a broad bias range as it incorporates the pertinent physics of thermionic, thermionic field-emission, and field-emission processes from a 3D metal into a 2D semiconductor. The II-VV model is validated against the measurement data of 2-, 3-, and 4-layer ambipolar MoTe2_2 SB-FETs fabricated in our lab, as well as the published data of unipolar 2D SB-FETs using MoS2_2. Finally, the model's physics is tested rigorously by comparing model-generated data against TCAD simulation data

    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction

    Get PDF
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs

    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction

    Get PDF
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs
    corecore