20 research outputs found

    Path planning of multiple autonomous vehicles

    Get PDF
    Safe and simultaneous arrival of constant speed, constant altitude UAVs on target is solved by design of paths of equal lengths. The starting point of the solution is the well-known Dubins path which is composed of circular arcs and line segments, thus requiring only one simple manoeuvre - constant rate turn. An explicit bound can be imposed on the rate during the design and the resulting paths are the minimum time solution of the problem. However, transition between arc and line segment entails discontinuous changes in lateral accelerations (latax), making this approach impractical for real fixed wing UAVs. Therefore, the Dubins solution is replaced with clothoid and also a novel one, based on quintic Pythagorean Hodograph (PH) curves, whose latax demand is continuous. The clothoid solution is direct as in the case of the Dubins path. The PH path is chosen for its rational functional form. The clothoid and the PH paths are designed to have lengths close to the lengths of the Dubins paths to stay close to the minimum time solution. To derive the clothoid and the PH paths that way, the Dubins solution is first interpreted in terms of Differential Geometry of curves using the path length and curvature as the key parameters. The curvature of a Dubins path is a piecewise constant and discontinuous function of its path length, which is a differential geometric expression of the discontinuous latax demand involved in transitions between the arc and the line segment. By contrast, the curvature of the PH path is a fifth order polynomial of its path length. This is not only continuous, also has enough design parameters (polynomial coefficients) to meet the latax (curvature) constraints (bounds) and to make the PH solution close to the minimum time one. The offset curves of the PH path are used to design a safety region along each path. The solution is simplified by dividing path planning into two phases. The first phase produces flyable paths while the second phase produces safe paths. Three types of paths are used: Dubins, clothoid and Pythagorean Hodograph (PH). The paths are produced both in 2D and 3D. In two dimensions, the Dubins path is generated using Euclidean and Differential geometric principles. It is shown that the principles of Differential geometry are convenient to generalize the path with the curvature. Due to the lack of curvature continuity of the Dubins path, paths with curvature continuity are considered. In this respect, initially the solution with the Dubins path is extended to produce clothoid path. Latter the PH path is produced using interpolation technique. Flyable paths in three dimensions are produced with the spatial Dubins and PH paths. In the second phase, the flyable paths are tuned for simultaneous arrival on target. The simultaneous arrival is achieved by producing the paths of equal lengths. Two safety conditions: (i) minimum separation distance and (ii) non-intersection of paths at equal distance are defined to maneuver in free space. In a cluttered space, an additional condition, threat detection and avoidance is defined to produce safe paths. The tuning is achieved by increasing the curvature of the paths and by creating an intermediate way-point. Instead of imposing safety constraints, the flyable paths are tested for meeting the constraints. The path is replanned either by creating a new way-point or by increasing the curvature between the way-points under consideration. The path lengths are made equal to that of a reference path.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2

    Analysis of the backpack loading efects on the human gait

    Get PDF
    Gait is a simple activity of daily life and one of the main abilities of the human being. Often during leisure, labour and sports activities, loads are carried over (e.g. backpack) during gait. These circumstantial loads can generate instability and increase biomechanicalstress over the human tissues and systems, especially on the locomotor, balance and postural regulation systems. According to Wearing (2006), subjects that carry a transitory or intermittent load will be able to find relatively efficient solutions to compensate its effects.info:eu-repo/semantics/publishedVersio

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    The NASTRAN theoretical manual

    Get PDF
    Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis

    Quantum Gravity and Axions

    Get PDF
    In this thesis we study the Weak Gravity Conjecture (WGC) and the Swampland Distance Conjecture (SDC) in the context of axions. They suggest that theories containing axions with super-Planckian field ranges, such as models of large field inflation, are incompatible with quantum gravity. We challenge this statement by constructing axions with mildly super-Planckian field ranges in a compactification of type IIB string theory with fluxes. Large field distances in the corresponding 4d effective theory are only possible at the expense of an exponentially low cutoff. This is in spirit consistent with the SDC. Furthermore we study effective theories of axions with super-Planckian decay constants which hence violate the WGC. Axionic strings lead to topological inflation which may be considered a pathology of such theories. This suggests to take the naive magnetic WGC for axions seriously but we can not draw definite conclusions. Finally we investigate axionic shift symmetries which are expected to be broken by quantum gravitational effects. We point out that certain fermion operators break such symmetries and quantify the censorship of axionic shift symmetries via a conjectured lower bound on axion masses. Besides we discuss 3-forms as effective descriptions of instantons and fermion interactions generated by gravitational instantons

    NASTRAN: Users' experiences

    Get PDF
    The proceedings of a conference on NASA Structural Analysis (NASTRAN) to analyze the experiences of users of the program are presented. The subjects discussed include the following: (1) statics and buckling, (2) vibrations and dynamics, (3) substructing, (4) new capability, (5) user's experience, and (6) system experience. Specific applications of NASTRAN to spacecraft, aircraft, nuclear power plants, and materials tests are reported
    corecore