7,038 research outputs found

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development – namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) – raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks
    • …
    corecore